Singular perturbation approach to traveling waves in competing and diffusing species models

By

Yuzo HOSONO and Masayasu MIMURA

(Communicated by Prof. M. Yamaguti, June 13, 1981)

1. Introduction.

In the field of population dynamics, since Fisher's model had been presented, there have been extensive studies of reaction-diffusion equations of the form

$$\frac{\partial \bar{u}}{\partial t} = D \varDelta \bar{u} + \bar{f}(\bar{u}) , \qquad (1.1)$$

where \bar{u} and \bar{f} are *n* dimensional vectors and *D* is an $n \times n$ constant matrix. It is widely known that (1.1) exhibits a variety of interesting phenomena, in spite of its simplicity. One of them is the appearance of traveling wave fronts. This type of solution is represented by the form

$$\overline{U}(z) = \overline{u}(x - ct)$$

where c is a velocity vector. This function \overline{U} necessarily satisfies the following system of ordinary differential equations

$$D\bar{U}'' + c\bar{U}' + f(\bar{U}) = 0$$
, (1.2)

subject to appropriate boundary conditions imposed at $z=\pm\infty$, where '=d/dz. When n=1, the existence of $\overline{U}(z, c)$ and its stability were almost completely discussed by many authors. For $n=2\sim4$, there are some results on biological models such as Nagumo's equation, Hodgikin-Huxley's equation, and Field-Noyes's equation (see, for instance, [1, 5, 12]). However, there has not been as yet any powerful general theory for any n, except topological methods developed by Conley [3].

In the framework of (1.1), we discuss here a model of two competing and diffusing species described by

$$\frac{\partial u}{\partial t} - d_1 \frac{\partial^2 u}{\partial x^2} = f_0(u, v)u$$
,
$$\frac{\partial v}{\partial t} - d_2 \frac{\partial^2 v}{\partial x^2} = g_0(u, v)v$$
,
(1.3)

where u and v are the population densities of the two species. It is assumed from the competitive interaction that f_0 and g_0 satisfy