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1. Introduction

We are concerned with local solvability of the partial differential operators.
The notion of local solvability in  the  distribution's sense was introduced by L.
H firm ander. Let Q be a domain of R" and P be a partial differential operator with
smooth coefficients in Q.

Definition 1. We say that P is locally solvable at the point x e Q if and only if
there exists a  neighborhood U of x  such that for every fe  C ( U ) ,  there exists u E
g w )  which satisfies Pu = f in 9 '(U ).

1  aI  a m
Let I be a interval [— T, T], Dr = a n d  Dœ - where a=i at ' - i ax I '

( a l" - ,  ; ) e  N ", and N=(0 , 1 , 2,...). I n  this paper w e shall consider the local
solvability of the operator

(1 ) L= D f +P(x, t, Dx) (x , t)eQ x I

,  where P(x, t, D x ) = aOE(x, t)Dyc , a n d  aŒ(x, t) e C'(52 x I). When m = 1,

local solvability of L  is almost completely decided. (L. Nirenberg and F. Treves
[1 7 ]) . So we consider the case m > 2. In  this case, L becomes non-kowalewskian
opera to r. I n  non-degenerate case, hypoellipticity of parabolic system has been
proved by S . M izohata. In  degenerate case, hypoellipticity and well-posedness for
Cauchy problem is considered by many p eo p le . Some of their works give us some
information for L to be locally solvable. But we have little knowledge of necessary
condition for L to be locally solvable . For example, Y. Kannai has showed that

L I =/),+it.W ,

is hypoelliptic but not locally solvable at the origin, and R. Rubinstein has showed
that

L2 =1), — +itmD„ (n; even)


