Constructions of eigenfunctions for the Sturm-Liouville operator by comparison method

By

Sadao MIYATAKE

(Received Oct. 2, 1981)

§1. Introduction

This paper is concerned with constructions of eigenfunctions for the Sturm-Liouville operator $L = -\frac{d^2}{dx^2} + q(x)$ in $(-\infty, \infty)$. Here we assume that the real valued function q(x) satisfies the following conditions:

(C) $\begin{cases} q(x) \text{ is piecewise continuous and has the minimum value at } x = x_0, \\ m = q(x_0) = \inf_{-\infty < x < \infty} q(x) < M = \lim_{x \to \infty} q(x), \quad (M = \infty \text{ is included.}) \end{cases}$

Especially we consider concrete constructions of eigenfunctions corresponding to eigenvalues in (m, M), relying upon comparison theorems which assure the existence of bounded solutions $u_+(x, \lambda)$ and $u_-(x, \lambda)$ of $\frac{d^2}{dx^2}u = (q(x) - \lambda)u$ in neighbourhoods of $+\infty$ and $-\infty$ respectively. Namely we try to consider the Sturm's method of comparison even in the case of infinite demain $(-\infty, \infty)$. As we see later, this consideration motivates originally comparison theorems of type stated in Section 2, which are generalized in [2] and [3]. Incidentally we show that there exists a continuous monotone increasing function $\Phi(\lambda)$ satisfying $-\pi < \Phi(m) < 0$ such that λ is eigenvalue if and only if $\Phi(\lambda) = (n-1)\pi$, (n=1, 2, 3,...). In order to see that appearance of eigenvalues more precisely we need some estimates for $\Phi(\lambda)$. For this purpose we write

$$\Phi(\lambda) = \int_{\Omega(\lambda)} (\lambda - q(x))^{1/2} dx + R(\lambda),$$

where $\Omega(\lambda) = \{x; \lambda - q(x) > 0\}$ and obtain a suitable estimate for $R(\lambda)$, to show that $R(\lambda)$ is a remainder term as compared with the first term. In many books of physics (for example [1], [5] etc.) we find the following type of formula: $\int_{\Omega(\lambda n)} (\lambda_n - q(x))^{1/2} dx = \left(n - \frac{1}{2}\right) \pi$, which was explained by the so-called W. K. B. method. As for mathematics Tichmarsh [6] showed that there exists a constant C such that