On the poles of the scattering matrix for two strictly convex obstacles: An addendum

By

Mitsuru Ikawa

(Communicated by Prof. Mizohata, Sept. 22, 1982)

§1. Introduction

The purpose of this paper is to improve the second part of Theorem 1 of the previous paper [2]. Namely, we like to give a more precise information on the existence of the poles of the scattering matrix $\mathscr{S}(z)$. The result we want to show in this paper is

Theorem 1. Suppose that \mathcal{O} satisfies the same conditions as in Theorem 1 of [2]. Then there exists at least a pole of $\mathscr{S}(z)$ in $\{z; |z-z_j| \leq C(|j|+1)^{-1/2}\}$ for all large |j|.

As remarked in [2], in order to show Theorem 1 it suffices to prove

Theorem 2. The operator $U(\mu)$ which is defined in Theorem 2 of [2] has at least a pole in $\{\mu; |\mu - \mu_i| \leq C(|j| + 1)^{-1/2}\}$ for all large |j|.

The plan of the proof of Theorem 2 is as follows. First we shall construct an asymptotic solution u(x, t; k) of the problem

(1.1) $\begin{cases} \Box u = 0 & \text{in } \Omega \times \mathbf{R} \\ u = m(x, t; k) & \text{on } \Gamma \times \mathbf{R} \\ \text{supp } u \subset \overline{\Omega} \times \{t; t > 0\} \end{cases}$

for an oscillatory boundary data

(1.2)
$$m(x, t; k) = e^{ik(\varphi_{\infty}(x) - t)} g(x)m(t)$$

following the process of [2], where φ_{∞} is a phase function introduced in §3 of [2], and $g(x) \in C_0^{\infty}(\Gamma_1)$, $m(t) \in C_0(\mathbb{R})$. Then the Laplace transform $\hat{u}(x, \mu; k)$ of u(x, t; k) becomes an approximation of $\hat{m}(\mu + ik)U(\mu)(e^{ik\varphi_{\infty}(\cdot)}g(\cdot))(x)$, and we estimate $\Delta_{C_j}\hat{u}(A(l_0), \mu; k_j)$ for $A(l_0)$ a point on the segment $a_1a_2, C_j = \{\mu; |\mu - \mu_j| = \eta\}$ $(\eta > 0)$ and $k_j = -j\pi/d$, where $\Delta_C \hat{u}$ denotes the variation of arg \hat{u} along the contour C.