On the existence of transversal homoclinic points of some real analytic plane transformation

By

Masaru Morinaka

(Received Aug. 25, 1982)

0. Introduction

In this paper we shall consider the following real analytic plane transformation f:

$$f(x, y) = (y + \xi(x), x),$$

$$f^{-1}(x, y) = (y, x - \xi(y)),$$

where ξ is a real analytic function belonging to X which will be define in Section 5 below. X is not vacant. For example $\xi(x) = cx(1-x)(c>0)$ is in X.

The differential of f is

$$df_{(x,y)} = \begin{pmatrix} \xi'(x) & 1 \\ 1 & 0 \end{pmatrix}$$

 (x_0, y_0) is a fixed point if and only if $x_0 = y_0$ and $\xi(x_0) = 0$. Also, it is hyperbolic if and only if $\xi'(x_0) \neq 0$.

By the parallel transformation along the line x = y, its form is invariant ($\xi(x)$ tends to $\xi(x-a)$).

We assume 0 = (0, 0) to be a hyperbolic fixed point. The eigenvalue λ of df_0 satisfies following equation:

$$\lambda^2 - \xi'(0)\lambda - 1 = 0.$$

Let *s* be the reflection with respect to the line x + y = 1:

$$s(x, y) = (1 - y, 1 - x).$$

Conjugating f by s, we get

$$sfs^{-1} = (y, x - \xi(1 - y)).$$

The identity $sfs^{-1}=f^{-1}$ holds if and only if ξ satisfies the following functional equation: