The spectra of 1-forms on simply connected compact irreducible Riemannian symmetric spaces II

By

Eiji Kaneda

(Communicated by Prof. H. Toda, October 28, 1982)

Introduction.

In the preceding paper [5], we established a method to calculate the spectra of 1-forms on simply connected compact irreducible Riemannian symmetric spaces. By use of it, we determined the spectra of 1-forms on [AIII] $SU(p+q)/S(U(p) \times U(q))$ and [G] $G_2/SU(2) \times SU(2)$. The purpose of this paper is to show the complete lists of the spectra of 1-forms on all simply connected irreducible Riemannain symmetric spaces except: (1°) Compact simple Lie groups; (2°) [AIII], [G]; (3°) [BDI, II] $SO(p+q)/SO(p) \times SO(q)$ ($q \ge p$, p=1, 2). The spectra of 1-forms on [BDI, II] ($q \ge p$, p=1, 2) can be seen in Ikeda-Taniguchi [4] and Tsukamoto [9]. See also Gallot-Meyer [3], Levy-Bruhl-Laperrière [6], [7] and Strese [8]. The spectra of 1-forms on compact simple Lie groups can be obtained by Theorem 2.1 and Corollary to Theorem 1.3 in [5], however they are not treated here.

In order to explain the contents of this paper, we review some fundamental notations. Let G/K be a simply connected compact irreducible Riemannian symmetric space with G simple. We denote by $\mathcal{D}(G)$ the set of equivalence classes of irreducible representations of G and $\mathcal{D}(G, K)$ the set of equivalence classes of spherical representations of the symmetric pair (G, K). Let $g=\mathfrak{k}+\mathfrak{m}$ be the canonical decomposition of the Lie algebra \mathfrak{g} of G associated with G/K. We choose a Cartan subalgebra \mathfrak{t} of \mathfrak{g} containing a maximal abelian subspace of \mathfrak{m} . Let $\Pi = \{\alpha_1, \dots, \alpha_n\}$ be the set of simple roots with respect to a suitable linear order in \mathfrak{t} . We denote by p the Satake involution of the set $I = \{i \mid \alpha_i \in \Pi, \alpha_i \in \mathfrak{h}\}$, where $\mathfrak{b} = \mathfrak{t} \cap \mathfrak{k}$. Let D(G) be the set of dominant integral forms on \mathfrak{t} and let D(G, K) be the subset of D(G) consisting of all highest weights of $[\rho] \in \mathcal{D}(G, K)$. The set D(G, K) is given by the additive semi-group generated by the following M_i 's $(i \in I, p(i) \geq i)$:

$$M_{i} = \begin{cases} 2\Lambda_{i} \qquad p(i) = i, \ (\alpha_{i}, \Pi \cap \mathfrak{b}) = \{0\};\\ \Lambda_{i} \qquad p(i) = i, \ (\alpha_{i}, \Pi \cap \mathfrak{b}) \neq \{0\};\\ \Lambda_{i} + \Lambda_{p(i)} \qquad p(i) > i; \end{cases}$$

where $\{\Lambda_1, \dots, \Lambda_n\}$ stands for the set of fundamental weights.