On unitary representations and factor sets of covering groups of the real symplectic groups

Dedicated to Professor Hisaaki Yoshizawa on his 60th birthday

By

Tôru Umeda

(Received October 21, 1982)

Introduction.

In an attempt to get the metaplectic groups of "higher degree", Kubota presented a Weil type representation for SL(2, C) in the papers [7]-[10]. A similar construction of the covering groups of SL(2, R) was obtained by Yamazaki [16]. Briefly speaking, they replaced the role of the Fourier transformation in the construction of so-called Weil representation [14] by that of the Fourier-Bessel transformation. In the present paper we treat the case of the real symplectic group Sp(m, R), using the Bessel functions of matrix argument defined by Herz [5]. We start from a certain family of unitary operators defined on an open dense subset of Sp(m, R). Then this family determines a projective unitary representation of Sp(m, R). For a closer investigation of matters, we introduce a factor set for the universal covering group of Sp(m, R), which can be computed explicitly. The purpose of the present paper is to study such a family of unitary operators in connection with the factor set.

Let us explain our results in more detail. Let $S_m(\mathbf{R})$ be the space of all $m \times m$ real symmetric matrices and P_m the space of all $m \times m$ positive definite real symmetric matrices. For $\delta > -1$, we denote by $L^2_{\delta}(P_m)$ the Hilbert space of square integrable functions on P_m with respect to the measure $(\det x)^{\delta}dx$, where dx is the restriction of usual Lebesgue measure on $S_m(\mathbf{R})$. We denote three types of elements in $Sp(m, \mathbf{R})$ by $d(a) = \begin{pmatrix} a & 0 \\ 0 & t_{a^{-1}} \end{pmatrix}$, $t(b) = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$, $d'(c) = \begin{pmatrix} 0 & -t_{c^{-1}} \\ c & 0 \end{pmatrix}$ for $a, c \in GL(m, \mathbf{R})$ and $b \in S_m(\mathbf{R})$. Corresponding to these elements, we define three types of unitary operators on $L^2_{\delta}(P_m)$ as follows. For $\varphi \in L^2_{\delta}(P_m)$,

$$\begin{aligned} d_{\delta}(a)\varphi(x) &= \varphi({}^{t}a \, x \, a) |\det a|^{\delta+p} & (a \in GL(m, \mathbf{R})) \\ t_{\delta}(b)\varphi(x) &= \varphi(x) \operatorname{etr}(\sqrt{-1}b \, x) & (b \in S_m(\mathbf{R})), \\ d_{\delta}'(c)\varphi(x) &= \varphi^*(c^{-1}x^tc^{-1}) |\det c|^{-\delta-p} & (c \in GL(m, \mathbf{R})). \end{aligned}$$

Here p=(m+1)/2, etr(a)=exp(tr(a)), and φ^* is the Hankel transform of φ defined by

$$\varphi^*(x) = \int_{P_m} \varphi(y) A_{\delta}(x y) (\det y)^{\delta} dy$$