A note on the Segal-Becker type splittings

Dedicated to Professor Minoru NAKAOKA on his sixtieth birthday

By

Akira Kono

(Received January 19, 1983)

§1. Introduction

For a pointed space X, we define an infinite loop space Q(X) by $Q(X) = \operatorname{Colim} \Omega^n \Sigma^n X$. If X is an infinite loop space, then there is an infinite loop map $\xi : \overset{n}{Q}(X) \to X$ called the structure map.

The natural inclusion $j: BU(1) = \mathbb{C}P^{\infty} \to BU$ and the structure map $\xi: \mathbb{Q}(BU) \to BU$ of BU defined by the Bott periodicity theorem define an infinite loop map

$$\lambda: Q(\mathbb{C}P^{\infty}) \longrightarrow BU.$$

Quite similarly we can define $\lambda: Q(HP^{\infty}) \rightarrow BSp$ and $Q(BO(2)) \rightarrow BO$. In (7) Segal showed that λ has a splitting, that is there is a map $\varepsilon: BU \rightarrow Q(CP^{\infty})$ such that $\lambda \circ \varepsilon$ is a homotopy equivalence. On the other hand in (2) Becker constructed a splitting explicitly.

In this paper we give another construction of the splitting ε_c using the representation theory of compact Lie groups.

For the real and quaternionic cases, we can construct the splittings $\varepsilon_R: BO \rightarrow Q(BO(2))$ and $\varepsilon_H: BSp \rightarrow Q(HP^{\infty})$ quite similarly.

The natural maps $BU \rightarrow BSp$ and $CP^{\infty} \rightarrow HP^{\infty}$ defined by the natural inclusion $C \hookrightarrow H$ are denoted by j' and the natural maps $BU \rightarrow BO$ and $BU(1) \rightarrow BO(2)$ defined by $C \cong R^2$ are denoted by r. Then the purpose of this paper is to show

Theorem. The diagrams

$$\begin{array}{cccc} BU & \xrightarrow{j'} & BSp \\ & \varepsilon_{\mathbf{C}} & & & \downarrow^{\varepsilon_{\mathbf{H}}} \\ Q(\mathbf{C}P^{\infty}) & \xrightarrow{Q(j')} & Q(\mathbf{H}P^{\infty}) \\ & & BU & \xrightarrow{\mathbf{r}} & BO \\ & & \varepsilon_{\mathbf{C}} & & & \downarrow^{\varepsilon_{\mathbf{R}}} \\ Q(\mathbf{C}P^{\infty}) & \xrightarrow{Q(\mathbf{r})} & Q(BO(2)) \end{array}$$