A note on the local solvability of the Cauchy problem

Dedicated to Professor Sigeru MIZOHATA on his sixtieth birthday

By

Tatsuo NISHITANI

(Received December 10, 1982)

1. Introduction and results

In this note, we improve some results in the previous paper [3]. Let p(x, D) be a differential operator of order *m* with coefficients in $\gamma^{(s)}(V)$, where *V* is a neighborhood of the origin in \mathbb{R}^{n+1} ,

$$x = (x_0, x_1, ..., x_n), \quad D = (D_0, D_1, ..., D_n), \quad D_j = \frac{1}{i} \frac{\partial}{\partial x_i},$$

and $\gamma^{(s)}(V)$ denotes the set of all functions $f(x) \in C^{\infty}(V)$ such that for any compact set K in V, there are constants C, A with

$$|D^{\alpha}f(x)| \leq CA^{|\alpha|}(|\alpha|!)^{s}, x \in K,$$

for all multi-indexes $\alpha \in N^{n+1}$.

By the definition, $\gamma^{(1)}(V)$ coincides with the set of real analytic functions in V. For convenience sake, we set $\gamma^{(\infty)}(V) = C^{\infty}(V)$. We denote by $p_m(x, \xi)$ the principal symbol of p(x, D), and suppose that the hyperplan $\{x_0=0\}$ is non-characteristic for p(x, D). Heareafter it will be assumed that $p_m(x, 1, 0, ..., 0) = 1$. Let us consider the following problem.

$$(p, \phi(x'))_{\mu}; \begin{cases} p(x, D)u = 0\\ D_0^{j}u(0, x') = 0, \ 0 \le j \le \mu - 1, \\ D_0^{\mu}u(0, x') = \phi(x'), \end{cases}$$

where $x' = (x_1, \dots, x_n), 0 \le \mu \le m - 1$. Then we have

Theorem 1.1. Let $s = \infty$. Suppose that the characteristic equation $p_m(0, \xi_0, \hat{\xi}') = 0, \hat{\xi}' = (1, 0, ..., 0)$ has μ real and ν non-real roots $(\mu + \nu = m, \nu \ge 1)$. Then there is a sequence of positive number $\{C_n\}$ with the following property: let $g(x_1)$ be any C⁰-function defined near the origin for which $(p, g(x_1))_{\mu}$ has a local C^m-solution near the origin. Then $g(x_1)$ is C^{∞} in a neighborhood of the origin and we have