Gevrey well-posedness for a class of weakly hyperbolic equations

By

Enrico JANNELLI

(Communicated by Prof. S. Mizohata, October 10, 1983)

§1. Introduction.

In this work we shall deal with the Cauchy problem

(1)
$$\begin{cases} u_{il} = \sum_{i,j}^{1,n} (a_{ij}(t,x) u_{x_j})_{x_i} & \text{on} \quad \mathbf{R}_x^n \times [0, T] \\ u(0,x) = \varphi(x) & \\ u_t(0,x) = \phi(x) & \\ (a_{ij} = a_{ji}) \end{cases}$$

under the weak hyperbolicity condition

(2)
$$\sum_{i,j}^{1,n} a_{ij}(t,x) \xi_i \xi_j \ge 0 \qquad \forall \xi \in \mathbf{R}^n.$$

We shall say that problem (1) is well-posed in some space \mathscr{F} of functions or functionals on \mathbb{R}^n if for any φ , ψ in \mathscr{F} it admits one and only one solution u in $C^1([0, T], \mathscr{F})$.

It is known (see [2]) that the weakly hyperbolic equation $u_{tt} = a(t)u_{xx}$ may be not well-posed in C^{∞} , even if $a(t) \in C^{\infty}([0, T])$; therefore, we shall study problem (1) in the Gevrey classes $\gamma_{loc}^{(s)}$.

We shall prove the following

Theorem 1. Let us consider problem (1) under the hypothesis (2). Let us suppose that the coefficients $a_{ij}(t, x)$ fulfill the following conditions:

i) There exists a $\sigma \ge 1$ such that, $\forall K \subseteq \mathbb{R}_x^n$, the mapping

$$\boldsymbol{\xi} \longrightarrow \left[\sum_{i,j}^{1,n} a_{ij}(t,x)\boldsymbol{\xi}_{i}\boldsymbol{\xi}_{j}\right]^{1/\alpha}$$

is a continuous mapping from the sphere $S^n = \{\xi \in \mathbb{R}^n : |\xi| = 1\}$ into the space $BV([0, T]; L^{\infty}(K))$.

ii) $\forall K \Subset R_x^n$ there exist some positive constants Λ_K , Λ_K such that

$$||D_x^{\alpha}a_{ij}(t,x)||_{L^{\infty}(K)} \leq \Lambda_K A_K^{|\alpha|} (|\alpha|!)^{s}$$