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§0. Introduction.

Let R" be the n-dimensional euclidean space (n=2), and set H=H"
={xeR"; x, >0}, then H becomes the n-dimensional hyperbolic space
with respect to the hyperbolic metric p(x) |dx|, where po(x)=x;’. And
let I' be a group of isometries of H, which acts discontinuously on H.
L. V. Ahlfors showed, in his lecture note [5], the weak finiteness theorem :
if I' is finitely generated, then the dimension of a certain class Q(I") of
mixed tensor densities, automorphic under I, is finite, which is an extension
to higher dimensions of analytic parts of his famous finiteness theorem
[1].

Our main aim is to introduce another certain class Q(I") containing
Q(I"), for which the dimension of Q(I') is still finite (Corollary 3). In
order to investigate Q(I"), we shall study a class P(I") of quasiconformal
deformations and derive properties of Q(I") from those of P(I") (Theorems
5 and 6, and Corollary 4).

In §1 we shall define some notations and state Ahlfors’ weak finiteness
theorem. In §2 we shall study quasiconformal deformations, and derive
some new facts (Theorems 3 and 4). In §3 we shall state our main
results, which will be proven in §5, after providing some lemmas in §4.
And in the last §6 we shall state some remarks for the case n=3, particu-
larly that our class Q(I") turns out to be 0-dimensional.
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§1. Notations and Ahlfors’ weak finiteness theorem.

By column vectors we denote the points in R", and by *X the transpose
of a matrix X.



