On the endomorphism ring of the canonical module

By

Yoichi AOYAMA and Shiro GOTO

(Communicated by Prof. Nagata, Nov. 9, 1983)

Introduction.

A ring will always mean a commutative ring with unit. Let R be a noetherian ring, M a finitely generated R-module and N a submodule of M. We denote by $\operatorname{Min}_{R}(M)$ the set of all minimal elements in $\operatorname{Supp}_{R}(M)$. In the case where M is of finite dimension, we put $\operatorname{Assh}_{R}(M) = \{\mathfrak{p} \in \operatorname{Ass}_{R}(M) | \dim R/\mathfrak{p} =$ $\dim M\}$ and $U_{M}(N) = \bigcap Q$ where Q runs through all the primary components of N in M such that $\dim M/Q = \dim M/N$. Let T be an R-module and \mathfrak{a} an ideal of R. $E_{R}(T)$ denotes the injective envelope of T and $H_{\mathfrak{a}}^{i}(T)$ is the *i*-th local cohomology module of T with respect to \mathfrak{a} . A semi-local ring means a noetherian ring with a finite number of maximal ideals and a local ring is a semi-local ring with unique maximal ideal. We denote by $\hat{}$ the Jacobson radical adic completion over a semi-local ring. For a ring R, Q(R) denotes the total quotient ring of R and we define $\dim_{R} 0$ to be $-\infty$ and height R to be $+\infty$.

First we recall the definition of the canonical module.

Definition 0.1 ([6, Definition 5.6]). Let R be an *n*-dimensional local ring with maximal ideal \mathfrak{n} . An *R*-module *C* is called *the canonical module* of *R* if $C \bigotimes_R \hat{R} \cong \operatorname{Hom}_R(H^n_{\mathfrak{n}}(R), E_R(R/\mathfrak{n})).$

When R is complete, the canonical module C of R exists and is the module which represents the functor $\operatorname{Hom}_{R}(H^{n}_{\mathfrak{u}}(\), E_{R}(R/\mathfrak{n}))$, that is, $\operatorname{Hom}_{R}(H^{n}_{\mathfrak{u}}(M), E_{R}(R/\mathfrak{n}))\cong \operatorname{Hom}_{R}(M, C)$ (functorial) for any R-module M ([6, Satz 5.2]). For elementary properties of the canonical module, we refer the reader to [5, § 6], [6, 5 und 6 Vorträge] and [2, § 1]. If R is a homomorphic image of a Gorenstein ring, R has the canonical module C and it is well known that $C_{\mathfrak{p}}$ is the canonical module of $R_{\mathfrak{p}}$ for every \mathfrak{p} in $\operatorname{Supp}_{R}(C)$ ([6, Korollar 5.25]). On the other hand, as was shown by Ogoma [7, § 6], there exists a local ring with canonical module and non-Gorenstein formal fibre, hence not a homomorphic image of a Gorenstein ring. But the following fact holds in general and our consideration largely depends on it.

Acknowledgement. Both authors were partially supported by Grant-in-Aid for Co-operative Research.