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1. Introduction.

We consider the following system of semi-linear partial differential equations
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with the initial data u(x, 0)=¢(x) and v(x, 0)=¢(x). When a>0 and b<0 the
above system has been considered in ([7]) as a model for the development in
time of a prey u(x, t) and predator v(x, {) running on a straight line with speeds
Zand p respectively. The constants a and b are considered as rates of natural
multiplication of prey without predator and rate of natural extinction of predator
without prey respectively.
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By setting Vil and a=¢ the above system can be rewritten as
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and it is in this form that we will consider the problem throughout the paper.
In earlier papers [5, 6] representations for the exact solutions of (1.1) when
¢=0 were obtained. Motivated by these, in [7] the authors consider problem
(1.1) as a perturbation of the problem when ¢=0. Assuming u,(x, t) and v4(x, ?)
to be the exact solutions when ¢=0, problem (1.1) is then studied by a perturba-

tion procedure and a solution is sought in the form (2 u(x, He®, Dualx, t)e").
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The main theorem of their paper derives sufficient conditions on ¢ in terms of
T in order that solutions of the above form exist over (—oo, c0)X [0, T]. Uni-
form convergence of the series is also discussed.

In this paper we study problem (1.1) by following a “Peano-Arzela” type
constructive approximation scheme in the spirit of [2]. This approach enables
us to obtain global existence results for (1.1) and since uniqueness holds for the



