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Introduction. The classical theorem of Hadamard concerning entire functions
of a complex variable is composed of the following three assertions: (i) If f is
an entire function of finite order 4, then the order of the zero locus of f does
not exceed A. (ii) For a divisor A of finite order A prescribed on the complex
line C, there exists an entire function F of the same order A having A as its
zero locus. F is given by a canonical product of genus ¢ with A—1=¢<2A. (iii)
In the same situation as (ii), every entire function f of finite order with zero
locus A is written as f=e¢FF with a polynomial P. The order of f is
max {4, deg P}.

Now let 2 be a domain in the space C™ of m complex variables t=(¢!, ---, t™).
We consider holomorphic functions f and divisors A on CxQ. They can be
respectively regarded as families of entire functions and divisors on C depending
analytically on the parameter t€2. Their orders are then defined as functions
of ¢. In the present note we will investigate the problem: To what extent do
the properties corresponding to the above Hadamard theorem remain valid for
these analytic families ?

For a function or a divisor on C X2 we consider, along with the order A(t),
the regularized order A*(¢) introduced by Lelong [7]. They take on the same
value except on a pluripolar set in £. We shall find that the concept of regu-
larized order is adequate for our investigation since A*(f) bounds the rate of
growth uniformly in the vicinity of the point ¢ in . Some basic properties of
A*(t) are resumed in §1.

The central part of our problem concerns with the existence of a holomorphic
function of finite order with prescribed divisor A. We want to obtain such a
function by forming a canonical product for each t=£. To do this the genus
g of the canonical product should be chosen. We wish to choose ¢ independently
of the parameter f, while ¢+1 cannot be smaller than the order A,(¢) of the
divisor A in order to guarantee the convergence. This is impossible when 1,(¢)
is unbounded. So we first restrict the variability of ¢ to a subdomain 2’ of @
on which A4(f) is bounded, and construct canonical products for t€Q’. It is
crucial to show that this construction actually yields a holomorphic function



