Stochastic control related to branching diffusion processes

By

Makiko NISIO

(Communicated by Prof. S. Watanabe, June 29, 1984)

1. Introduction.

First of all we will recall a controlled stochastic differential equation (CSDE in short) and its Hamilton-Jacobi-Bellman equation (H-J-B eq. in short). [2, 4, 6, 13].

Let Γ be a compact subset of \mathbb{R}^k . Let B be a *d*-dimensional Brownian motion. A Γ -valued process is called an admissible control, if it is progressively measurable with respect to B. \mathfrak{A} denotes the totality of admissible controls.

Consider CSDE for $U \in \mathfrak{A}$,

(1.1)
$$\begin{cases} d\xi(t) = \alpha(\xi(t), U(t)) dB(t) + \gamma(\xi(t), U(t)) dt \\ \xi(0) = x \, . \end{cases}$$

Under the mild conditions, we have a unique solution $\xi = \xi(\cdot, x, U)$ of (1.1). Define a pay-off function $V(t, x, \phi, U)$ by

(1.2)
$$V(t, x, \phi, U) = E \int_0^t e^{-\int_0^s c(\xi(\theta), U(\theta)) d\theta} f(\xi(s), U(s)) ds + e^{-\int_0^t c(\xi(\theta), U(\theta)) d\theta} \psi(\xi(t)),$$

where $\xi(t) = \xi(t, x, U)$. We want to maximize its value by a suitable choice of $U \in \mathfrak{A}$.

(1.3)
$$V(t, x, \phi) = \sup_{U \in \mathfrak{A}} V(t, x, \phi, U)$$

is called a value function.

The operator V(t) defined by

(1.4)
$$V(t)\phi(x) = V(t, x, \phi)$$

becomes a semigroup on a Banach lattice of $BUC(R^d)$ (=totality of bounded and uniformly continuous functions on R^d). Its generatory \mathfrak{G} is given by

(1.5)
$$\mathfrak{G}\phi = \sup_{u \in \Gamma} (A(u)\phi - c(x, u)\phi + f(x, u), \quad \text{for smooth } \phi,$$