Varieties which have two projective space bundle structures

By

Eiichi SATO

(Communicated by Prof. Nagata, Sep. 9, 1983: Revised, May 9, 1984)

Introduction.

In this article we study the structure of varieties which have two bundle structures whose fibers are projective spaces. Well-known examples are $P^r \times P^s$, $P(T_{P^n})$ and fiber product $R_1 \times_Y R_2$ of R_1 and R_2 over Y where R_1 and R_2 are ruled varieties over Y. The aim of this work is to classify such varieties under some additional conditions.

Let M and $M_i(i=1, 2)$ be varieties over an algebraically closed field k and let p and q be proper surjective morphisms $M \rightarrow M_1$ and $M \rightarrow M_2$, respectively, where every closed fiber of p and q is isomorphic to P^r and P^s respectively. To fix the idea let us introduce the following notion:

(P) We say that M has two projective space bundle structures $(M_1, P^r, p; M_2, P^s, q)$ if there are two varieties M_1, M_2 and two morphisms p, q as above and if dim $\Phi(M) > \max \{\dim M_1, \dim M_2\}$, where Φ is the morphism $M \rightarrow M_1 \times M_2$ induced by p and q (see Remark 1.6 about the second condition).

Under this notation, we have

Theorem A. Let M be a non-singular projective variety over an algebraically closed field k. Assume M has two projective space bundle structures $(\mathbf{P}^{l}, \mathbf{P}^{r}, p; \mathbf{P}^{m}, \mathbf{P}^{s}, q)$.

1) If the characteristic of k is zero, then M is isomorphic to either a) $P^{l} \times P^{m}$ (p and q are the first and the second projections, respectively), or, b) $P(T_{Pl})$, where T_{Pl} is the tangent bundle of P^{l} . (See Lemma 1.15). In the case of (b), l=m=r+1=s+1.

2) If the characteristic of k is positive, additionally, assume that p(or, q) is \mathbf{P}^r -bundle on $\mathbf{P}^1(or, \mathbf{P}^s$ -bundle on \mathbf{P}^m , resp.) in the Zariski topology. Then we have the same conclusion as in 1).

Theorem B. Let M be a non-singular projective 3-fold over an algebraically closed field of characteristic 0. Assume that M has two projective space bundle structures $(S_1, P^1, p; S_2, P^1, q)$ with non-singular surfaces S_1, S_2 . Then M is one of the following

1) $S_1 \times_C S_2$, where S_i is a P^1 -bundle over a non-singular complete curve C.