Extreme Pick-Nevanlinna interpolating functions

Dedicated to Professor Yukio Kusunoki on the occasion of his sixtieth birthday

By

Maurice HEINS

(Communicated by Prof. Y. Kusunoki, October 1, 1984)

1. In this paper we treat an aspect of Pick-Nevanlinna interpolation theory [13-17]which finds its setting in the theory of convex sets. Specifically, we consider the class I of analytic functions f on Δ , the open unit disk in C, which satisfy the following conditions: (i) Ref > 0, (ii) f(0) = 1, (iii) $f(z_k) = w_k$, k = 1, ..., n, where the z_k are given distinct points of $\Delta - \{0\}$ and the w_k are given points of $\{\text{Re } z > 0\}, k = 1, ..., n$, *n* a nonnegative integer. In other words, we are concerned with a harmlessly normalized version of the finite Pick-Nevanlinna interpolation problem where the value 1 is assigned to 0. [For the sake of simplicity of exposition we confine our attention to 0 order interpolation. To be sure, the results obtained will be seen to extend readily.] We suppose that the class I contains more than one member. The class I is a compact convex subset of the space of analytic functions on Δ . We seek to characterize the extreme points of I, i.e. the members of I not admitting a representation of the form $(1-t)f_1 + tf_2$, where f_1 and f_2 are distinct members of I and 0 < t < 1. It is to be noted that the extreme points associated with a non-normalized finite Pick-Nevalinna problem correspond directly to those associated with a simply related normalized problem as we see with the aid of the map $f \mapsto Af \circ \alpha + iB$, A > 0. $B \in \mathbf{R}$, α a conformal automorphism of Δ . The map in question is a bijection of the space of analytic functions on Δ with positive real part onto itself.

We have the following theorem.

Theorem 1. The extreme points of I are precisely the members of I having constant valence on $\{\text{Re } z > 0\}$, the value v of the valence satisfying $1 + n \le v \le 1 + 2n$.

The proof of the theorem (§2) will be based on the Poisson-Stieltjes representation for analytic functions on Δ with non-negative real part [10, 18] and an elementary fact from Pick-Nevanlinna interpolation theory.

In §3 the extreme points of I will be given a simple representation based on a Nevanlinna representation for the members of I. As a consequence, the extreme points of I will be given a parametric representation the domain of which is the frontier of a convex body in C^{n+1} specified in the manner of the Carathéodory