Über Längen- und Flächenverzerrungen für die Carathéodorysche Klasse

Herrn Professor Yukio Kusunoki zum sechzigsten Geburtstag gewidmet

Von

Yûsaku Komatu

(Communicated by Prof. Kusunoki June 1, 1984)

Einleitung

Es sei \mathscr{F} die Klasse derjenigen im Einheitskreis $E = \{|z| < 1\}$ regulär analytischen Funktionen f, die durch f(0) = 0 und f'(0) = 1 normiert sind. In einer früheren Note [4], und mehr ausführlich in [5], haben wir den linearen Operator \mathscr{L} eingeleitet, der auf der Klasse \mathscr{F} durch die Gleichung

$$\mathscr{L}f(z) = \int_{I} \frac{f(zt)}{t} \, d\sigma(t)$$

mit einem gegebenen Wahrscheinlichkeitsmaß σ auf dem Intervall I = [0, 1] definiert wird. Es läßt sich dabei zeigen, daß dieser Operator immer in eine in bezug auf einen reellen Parameter $\lambda \ge 0$ additive Familie $\{\mathscr{L}^{\lambda}\}$ mit $\mathscr{L}^1 = \mathscr{L}$ und $\mathscr{L}^0 = \mathrm{id}$ eingebettet wird und sogar, daß es unter gewisser zugefügter Einschränkung an σ ein bestimmtes Wahrscheinlichkeitsmaß σ_{λ} für jedes λ gibt, das die Integraldarstellung

$$\mathscr{L}^{\lambda}f(z) = \int_{I} \frac{f(zt)}{t} d\sigma_{\lambda}(t)$$

zuläß. Im folgenden soll es sich um diese Familie $\{\mathscr{L}^{\lambda}\}$ handeln und der Kürze halber wird $f_{\lambda} = \mathscr{L}^{\lambda} f$ geschrieben.

Für das besondere Maß $\sigma(t) = t$ tritt ein ausgezeichneter Fall auf. In der Tat, läßt sich zeigen, daß das Maß σ_{λ} dann die Dichte besitzt und sogar der Operator \mathcal{L}^{λ} explizit durch

$$\mathcal{L}^{\lambda} f(z) = \frac{1}{\Gamma(\lambda)} \int_0^1 \frac{f(zt)}{t} \left(\log \frac{1}{t} \right)^{\lambda - 1} dt$$

bestimmt wird. Dieser Operator führt sich demgemäß auf die fraktionale Integration der Ordnung λ in bezug auf log z zurück; nämlich läßt er sich in die Gestalt

$$\mathscr{L}^{\lambda} f(z) = \frac{1}{\Gamma(\lambda)} \int_{\infty}^{\log z} f(e^{\omega}) (\log z - \omega)^{\lambda - 1} d\omega$$