Some deformations of codimension two discrete groups

Dedicated to Yukio Kusunoki on his sixtieth birthday

By

Bernard MASKIT*

1. Let H^n be hyperbolic *n*-space, and let \tilde{L}^n denote the group of isometries of H^n ; the orientation preserving half of \tilde{L}^n is denoted by L^n . A parabolic element of L^n is a transformation which has exactly one fixed point in the Euclidean closure of H^n . If we normalize so that H^n is the upper half-space, and the parabolic element *j* has its fixed point at ∞ , then, in its action on $\hat{E}^{n-1} = E^{n-1} \cup \{\infty\} = \partial H^n$, j(x) = r(x) + b, where *r* is an orthogonal transformation, and *b* is not in the range of 1 - r. If r = 1, then *j* is a *pure* parabolic transformation, or translation, while if $r \neq 1$, *j* is *impure*.

The following question was posed by John Morgan (oral communication). Is there a cofinite volume discrete subgroup G of L^n , containing pure parabolic elements, and a deformation \tilde{G} of G in some L^m , m > n, where the corresponding parabolic elements of \tilde{G} are impure?

Note that if m < 4, then every parabolic element of L^m is pure.

For m=n+1, it follows from a theorem of Cheeger and Gromoll [1] that a discrete free abelian group of orientation preserving Euclidean motions of rank n-1, acting on E^n , contains only pure parabolic elements; we outline an elementary proof of this fact below. It follows that if G is a discrete subgroup of L^n , of cofinite volume, and G contains only pure parabolic transformations, then no deformation of G in L^{n+1} contains impure parabolic elements.

For higher codimension, we give examples to show that one can deform a pure parabolic subgroup into an impure one. These examples also serve as examples for the following. For every $n \ge 4$, and for every positive $k \le n-3$, there is a family of non-conjugate discrete subgroups $\{G_{\alpha}\}$ of \tilde{L}^{n} , with the following properties. The family is parametrized by $(S^{1})^{k}$; for n=4 and 5 the G_{α} all have the same limit set, a Euclidean sphere of dimension k; for all $n \ge 4$ and for almost all α , the stabilizer in G_{α} of the hyperbolic (k+1)-plane spanning the limit set is the identity (in particular, for almost all α , G_{α} is not conjugate in \tilde{L}^{n} to a subgroup of \tilde{L}^{k+1}); and all the G_{α} have the same finite sided fundamental polyhedron, with the same combinatorial identifications.

Communicated by Prof. Kusunoki Oct. 30, 1984

^{*} Research supported in part by NSF Grant # DMS 8401280