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1. Introduction and first statement of main result.

1.1. The study of holomorphic sections of the Teichmiiller curve was initiated
by Hubbard [16] (see also Earle-Kra [7], [8]). Hubbard proved that for p=2
the map n: V,—T, has precisely 6 holomorphic sections, the Weierstrass sections,
while for p=3, = has no holomorphic sections. The base space T, is a contractible
domain of holomorphy. Nevertheless, Hubbard’s result shows that for p>2 we
cannot choose a point on each surface in a way that depends holomorphically on
moduli. On the other hand, we can choose on every surface of genus p=>2 a divisor
class of degree one that depends holomorphically on moduli (see [5]).

1.2. Let n be a positive integer. Let 7,: S}(V,)— T, be the fiber space whose
fiber over te T, is n,'(t)=S"(X,), the n-fold symmetric product of the Riemann
surface X, =n"1(f) represented by t (see §§2 and 3 for details). The points of S$"(X,)
can be identified with the integral divisors of degree n on X,. A holomorphic
section of =, corresponds to a choice on each surface of an integral divisor of degree
n that depends holomorphically on moduli.

In this paper we concentrate on the case n=p—1. For n<p every divisor
D e S"(X) on a compact Riemann surface X of genus p is special in the sense that
there exists on X a nontrivial abelian differential of the first kind that vanishes on
D (p—1 is the largest integer with this property). A divisor D e SP~!(X) is half-
canonical if 2D is the divisor of a nontrivial abelian differential of the first kind.
Similarly, a section s of m,_, is half-canonical if s(t) is a half-canonical divisor for
all te T,, We can now state our main result as

Theorem 1. The map n,_y: S (V,)—»T,, p=2, has a half-canonical holo-
morphic section if and only if p=2,3,0r 4. The number of such sections is precisely
6 for p=2, 28 for p=3, and 120 for p=4; that is, precisely the number of odd half-
periods in the Jacobi variety.
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