A characterization of the finely harmonic morphism in R^n

Dedicated to Professor Yukio Kusunoki on his 60th birthday

By

Hiroaki MASAOKA

Introduction.

B. Fuglede [10] gave a characterization of the harmonic morphism in \mathbb{R}^n as follows:

Theorem A (Fuglede). For a continuous mapping φ from a domain U ($\subset \mathbb{R}^n$, $n \geq 2$) into \mathbb{R}^m ($m \geq 2$), the followings are equivalent:

(i) φ is a harmonic morphism on U.

(ii) The components φ_j of $\varphi(1 \le j \le m)$, $\varphi_i \varphi_j (i \ne j)$ and $\varphi_i^2 - \varphi_j^2$ are harmonic in U.

(iii) The components φ_j of φ $(1 \leq j \leq m)$ are harmonic in U, and $\nabla \varphi_i \cdot \nabla \varphi_j = \delta_{ij} |\nabla \varphi_1|^2$ on U.

Recently Fuglede introduced the notion of finely harmonic functions in the potential theory on harmonic spaces and he studied finely harmonic morphisms (cf. [7], [8] and [9]).

In this paper we treat a problem of the same type as Theorem A for finely harmonic morphisms in \mathbb{R}^n . And we obtain the following theorem which is an extension of Theorem A.

Theorem 1. For a finely continuous mapping φ from a finely open set U ($\subset \mathbb{R}^n, n \geq 2$) into \mathbb{R}^m ($m \geq 2$), the followings are equivalent:

(i) φ is a finely harmonic morphism on U.

(ii) The components φ_j of φ $(1 \le j \le m)$, $\varphi_i \varphi_j$ $(i \ne j)$ and $\varphi_i^2 - \varphi_j^2$ are finely harmonic in U.

(iii) The components φ_j of φ $(1 \leq j \leq m)$ are finely harmonic in U, and

$$\nabla \varphi_i \cdot \nabla \varphi_j = \delta_{ij} |\nabla \varphi_1|^2$$
 a.e. on U ,

where $\nabla \varphi_i$ is the gradient defined in Proposition 1 of §1.

This theorem will be proved by a probabilistic method. For that purpose we give a probabilistic characterization of the finely harmonic morphism in \mathbb{R}^n .

Received November 12, 1984.