Existence, uniqueness and analyticity of solutions to boundary value problems for equations of mixed type in a half space

Dedicated to Professor SIGERU MIZOHATA on his sixtieth birthday

By

Sadao Мічатаке

§1. Introduction and statements of results.

We consider the following boundary value problem

(P)
$$\begin{cases} \frac{\partial^2 u}{\partial x^2} + q(x)\frac{\partial^2 u}{\partial t^2} = 0, \quad (x, t) \in (0, \infty) \times R, \\ \lim_{x \to 0} u(x, t) = g(t) \text{ and } \lim_{x \to \infty} u(x, t) = 0, \quad t \in R \end{cases}$$

The coefficient q(x) is assumed to be a real-valued bounded smooth function on $[0, \infty)$ throughout this paper. We assume

(C)
$$\overline{\lim_{x \to \infty}} q(x) < 0$$

In our previous work [4] we showed some existence theorems for the above problem (P) with $\frac{\partial^2}{\partial^2 x}$ replaced by Δ , the Laplacian in a higher dimensional space, where q(x) satisfies (C) or $\lim_{x\to\infty} q(x) > 0$. Here confining ourselves to the condition (C) we gain an insight into the problem (P) to obtain the existence and uniqueness theorem of the solution in a fairly distinct and self-contained way and exhibit the analyticity in t of the solution u(x, t) for any fixed x larger than $\inf\{x; q(x) > 0\}$. We mention also to the existence of solutions satisfying zero boundary data.

Notation. g(t) is said to belong to H_{γ}^{k} if $e^{-\gamma t}g(t) \in H^{k}$, $(k > -\infty)$. We note $||g||_{H_{\gamma}^{k}}^{2} \equiv ||g||_{\gamma,k}^{2} = \sum_{j=0}^{k} \int_{-\infty}^{\infty} \left| \frac{d^{j}}{dt^{j}} (e^{-\gamma t}g(t)) \right|^{2} dt$ for integer $k \ge 0$ and $H_{\gamma} = H_{\gamma}^{\infty} = \bigcap_{k=0}^{\infty} H_{\gamma}^{k}$. Denote $g(t) \in B_{\gamma}^{k}$ if $e^{-\gamma t}g(t) \in B^{k}$, and $|g|_{B_{\gamma}^{k}} = |g|_{\gamma,k} = \sum_{j=0}^{k} \sup_{t \in R} \left| \frac{d^{j}}{dt^{j}} (e^{-\gamma t}g(t)) \right|$ and $B_{\gamma} = \bigcap_{k=0}^{\infty} B_{\gamma}^{k}$. $f(x, t) \in C^{k}([0, \infty); H)$ means that f(x, t) is k-times continuously differentiable on $[0, \infty)$ and $\lim_{k \to \infty} f(x, t) = 0$ with values in H.

Theorem 1.Suppose that q(x) satisfies (C).Then there exists a setReceived April 26, 1985.