Differential closure of differential field of positive characteristic

By

Kayoko TSUJI (née Shikishima)

0. Introduction.

Let I be a set of indices and K a differential field of positive characteristic p with aset of (commutative and iterative higher) derivation oparators $\Delta = \{\delta_i; i \in I\}$. We denote an algebraic closure of K by K_a . Every derivation $\delta_i = (\delta_{i\nu}; \nu \in N)$ $(i \in I)$, N being the set of all natural numbers including zero, has a unique extension derivation to the separably algebraic closure K_s of K in K_a which we denote also by δ_i ; moreover, since these extension derivations δ_i $(i \in I)$ are commutative, K_s is uniquely regarded as a differential extension of K (see [1]). By the paper [2] of myself, we get easily the following two theorems about the extensions of the derivations.

Let x be an element of K_a and δ_i any element of Δ . We say that δ_i can be *extended to* x, if δ_i has an extension derivation to some extension of K_s that contains x. For convenience, we shall denote the *e*-th power of the characteristic p by p(e).

Theorem A. An element δ_i of Δ can be extended to x if and only if the condition

(1)
$$\delta_{i,\nu}(x^{p(e)}) = 0 \quad (0 < \nu < p(e))$$

is satisfied for some element $e \in N$ with $x^{p(e)} \in K_s$. When that is so, setting $y = x^{p(e)}$, the subfield

$$K_{s,x} = K_s((\delta_{i,\nu p(e)} y)^{p(-e)}; \nu \in \mathbb{N})$$

of K_a has a unique extension derivation $\delta'_i = (\delta'_{i\nu}; \nu \in N)$ of δ_i which is defined by the fermula

(2)
$$\delta_{i\nu}^{\prime} z = (\delta_{i,\nu p(e)}(z^{p(e)}))^{p(-e)} \quad (\nu \in N, z \in K_{s,x});$$

the equality $K_{s,x} = K_s(\delta'_{i\nu}x; \nu \in N)$ holds true, and $K_{s,x}$ is the smallest extension of K_s containing x that has an extension derivation of δ_i .

Remark. We see by [1] that the condition (1) is equivalent to the condition

$$\delta_{i\nu}(x^{p(e)}) = 0 \quad (\nu \in \mathbb{N} - \{0\} \quad \text{with } p(e) \not\mid \nu).$$

Communicated by Prof. Nagata, September 9, 1985