Decay rates of scattering states for Schrödinger operators

Dedicated to Professor Sigeru Mizohata on his 60 th birthday

By

Hiroshi ISOZAKI

Introduction.

In this paper, we derive a best possible decay rate of scattering states for the Schrödinger operator $H=-\varDelta+V(x)$ in $L^2(\mathbb{R}^n)$ $(n\geq 2)$ with a long-range potential. We impose the following assumption on V(x):

(A) $\begin{cases} V(x) \text{ is a real-valued } C^{\infty} \text{-function on } \mathbb{R}^n \text{ and for some constant } \varepsilon_0 > 0 \\ D_x^{\alpha} V(x) = O(|x|^{-1\alpha(1-\varepsilon_0)}) \text{ as } |x| \to \infty \\ \text{for all multi-index } \alpha. \end{cases}$

Here for $\alpha = (\alpha_1, \dots, \alpha_n)$, $D_x^{\alpha} = (\partial/\partial x_1)^{\alpha_1} \cdots (\partial/\partial x_n)^{\alpha_n}$ and $|\alpha| = \alpha_1 + \cdots + \alpha_n$.

As is well-known, if f belongs to the absolutely continuous subspace for H, the local position probability of e^{-itH} decays in the sense that for any R>0

$$\int_{|x|< R} |e^{-itH} f(x)|^2 dx \longrightarrow 0 \quad \text{as} \quad |x| \to \infty.$$

It is a rather difficult problem to obtain the rate of decay. In order to study it, one usually considers the operator norm of e^{-itH} in various function spaces different from $L^2 = L^2(\mathbb{R}^n)$. A convenient choice is the so-called weighted L^2 -spaces, and one studies the operator norm in L^2 of $\langle x \rangle^{-\sigma} e^{-itH} \langle x \rangle^{-\rho}$ ($\sigma, \rho > 0$), where $\langle x \rangle = (1+|x|^2)^{1/2}$. In our previous work [2], we have already proved some decay rates for e^{-itH} . Combining the result of [2] with the estimates for the parametrix of e^{-itH} introduced in [5] enables us to prove the following

THEOREM 1. Let $\chi(\lambda) \in C^{\infty}(\mathbb{R}^1)$ be such that for some d > 0, $\chi(\lambda) = 1$ if $\lambda > 2d$, $\chi(\lambda) = 0$ if $\lambda < d$. Then for any $s \ge 0$, there exists a constant $C_s > 0$ such that

$$\|\langle x \rangle^{-s} e^{-itH} \chi(H) \langle x \rangle^{-s} \| \leq C_s (1+|t|)^{-s}$$

for any $t \in \mathbf{R}^1$, where $\|\cdot\|$ is the operator norm in L^2 .

This estimate is seen to be best possible if one examines the case of $H_0 = -\Delta$. One can also allow some local singularities for V. Suppose V is split into two

Received May 22, 1985