A note on the function $\sum_{n=1}^{\infty} [nx+y]/n!$

By

Iekata Shiokawa and Jun-ichi TAMURA

Let f(x, y) be the function of real variables x and y defined by

$$f(x, y) = \sum_{n=1}^{\infty} \frac{[nx+y]}{n!},$$

where [t] denotes the greatest integer not exceeding the real number t. In this paper we prove in §3 the linear independency over the filed Q of all rationals of the values of f(x, y) for different irrationals x and in §2 their transcendency for rationals x. Also some properties of the function f(x, y) are studied in §1.

1. Some properties of the function f(x, y).

From the definition it follows that

(1)
$$f(x, y) = e[x] + (e-1)[y] + f(\{x\}, \{y\}),$$

where $\{t\} = t - [t]$. It is easily seen that

$$f(x, y) \neq f(x', y')$$
 if $(x, y) \neq (x', y')$,

except when x = x' is a rational number, say x = p/q with coprime integers q > 0and p, and $r/q \le y$, y' < (r+1)/q for some integer r; in this special case we have

(2)
$$f(p|q, y) = f(p|q, r|q)$$
 if $r|q \le y < (r+1)/q$.

The quantity in the right-hand side of (2) will be expressed in Theorem 1 as a linear form of the values of the exponential function. If x is an irrational number, f(x, y) is strictly increasing as a function of y. f(x, y) is also strictly increasing as a function of x for any fixed y, not necessarily irrational.

The function [x] satisfies the equality

$$[nx] = \sum_{r=0}^{q-1} \left[\frac{nx}{q} + \frac{r}{q} \right]$$

for any positive integer q, so that we find

$$f(x, 0) = \sum_{r=0}^{q-1} f\left(\frac{x}{q}, \frac{r}{q}\right),$$

Communicated by Prof. Yamaguti October 29, 1985