On the L²-boundedness of pseudo-differential operators

By

Yoshiki Higuchi and Michihiro Nagase

§1. Introduction.

Let \mathbb{R}^n denote the n-dimensional Euclidean space. Let m, ρ and δ be real numbers with $0 \le \rho$, $\delta \le 1$. If a smooth function $p(x, \xi)$ on $\mathbb{R}^n_x \times \mathbb{R}^n_\xi$ satisfies

for any multi-indices α and β , then we say that $p(x, \xi)$ belongs to Hörmander's class $S_{\rho,\delta}^m$ (see, for example, [5]). For $p(x, \xi)$ in $S_{\rho,\delta}^m$ we define the pseudo-differential operator $p(X, D_x)$ by

$$(1.2) p(X, D_x)u(x) = (2\pi)^{-n} \int e^{ix\cdot\xi} p(x, \xi) \hat{u}(\xi) d\xi,$$

where $\hat{u}(\xi)$ denotes the Fourier transform of u(x), that is, $\hat{u}(\xi) = \int e^{-ix \cdot \xi} u(x) dx$ and we denote $p(X, D_x) \in L_{\rho, \delta}^m$. The function $p(x, \xi)$ is called the symbol of the operator $p(X, D_x)$. In [4], Hörmander proved that if all of the operators in $L_{\rho, \delta}^m$ are $L^2(\mathbf{R}^n)$ -bounded then $m \leq \min \left\{ 0, \frac{n}{2} (\rho - \delta) \right\}$, by giving counter examples. When $\delta < 1$, Calderón and Vaillancourt in [1] showed that $m \leq \min \left\{ 0, \frac{n}{2} (\rho - \delta) \right\}$ implies the $L^2(\mathbf{R}^n)$ -boundedness of the operators in $L_{\rho, \delta}^m$. Moreover, when $\rho = \delta < 1$, there are many generalized theorems to the case of non-regular symbols (see, for example, [3], [7] and [12]). On the other hand, when $\delta = 1$, Chin-Hung-Ching in [2] proved that $S_{1,1}^0$ does not always define $L^2(\mathbf{R}^n)$ -bounded operators, and Rodino in [11] proved that the operator in $L_{\rho,1}^{-n(1-\rho)/2}$ is not always $L^2(\mathbf{R}^n)$ -bounded, by constructing the counter examples.

In the present paper we give also an example of symbols which is in $S_{\rho,1}^{-n(1-\rho)/2}$ but define operators unbounded in $L^2(\mathbf{R}^n)$, and we show that the decreasing order $n(1-\rho)/2$ of symbols is critical in a sense (see [6]). Our example is similar to the example constructed by Chin-Hung-Ching in the case $\rho=1$, and therefore a little different from the one of Rodino in [11].