Hyperbolic operators with symplectic multiple characteristics

By

Tatsuo NISHITANI

1. Introduction

Let U be an open set in \mathbb{R}^d with coordinates $x' = (x_1, \dots, x_d)$. Denote by T^*U the contangent bundle on U and by $(x', \xi') = (x_1, \dots, x_d, \xi_1, \dots, \xi_d)$ standard coordinates in T^*U . Let I be an open interval containing the origin and set $\mathcal{Q} = I \times U$. We denote by $(x, \xi) = (x_0, x', \xi_0, \xi')$ standard coordinates in $T^*\mathcal{Q}$ and

$$D_{i} = -i\partial/\partial x_{i}, j = 0, \dots, d, D = (D_{0}, D'), D' = (D_{1}, \dots, D_{d}).$$

Let

(1.1)
$$P(x, D) = D_0^m + \sum_{j=1}^m A_j(x, D') D_0^{m-j}$$

be a differential operator in D_0 of order *m* with coefficients $A_j(x, D')$ which are classical pseudodifferential operators of order *j* defined near $(\hat{x}, \hat{\xi}') = (0, \hat{x}', \hat{\xi}') \in I \times (T^*U \setminus 0)$. We denote by $p(x, \xi)$ the principal symbol of *P* and we assume that $p(x, \cdot)$ is hyperbolic with respect to dx_0 near $(\hat{x}, \hat{\xi}')$ that is the zeros ξ_0 of $p(x, \xi_0, \xi_0')$ are all real near $(\hat{x}, \hat{\xi}')$. We shall study the microlocal and local Cauchy problem for P(x, D) with data on $x_0 = 0$.

Denote by Σ the set of real characteristics of order *m* of *P*;

(1.2)
$$\Sigma = \{(x,\xi) \in T^* \mathcal{Q} \setminus 0; p(x,\xi) = dp(x,\xi) = \cdots = d^{m-1} p(x,\xi) = 0\}$$

We assume that

(1.3)
$$\Sigma \text{ is a } C^{\infty} \text{ manifold near } \rho = (\hat{x}, \hat{\xi}) = (\hat{x}, \hat{\xi}_0, \hat{\xi}') \text{ with the}$$
tangent space $T_{\rho} \Sigma$ at ρ such that $T_{\rho} S \supset T_{\rho}^{\sigma} \Sigma \cap T_{\rho} \Sigma$

where $S = \{x_0 = 0\}$ is a initial surface and $T_{\rho}^{\sigma} \Sigma$ is the σ orthogonal space of $T_{\rho} \Sigma$. Here σ is a natural 2 form on $T^*\mathcal{Q}$ given in any standard coordinates (x, ξ) by

$$\sigma = \sum_{j=0}^d d\xi_j \wedge dx_j \, .$$

Note that if $T_{\rho}\Sigma$ is a symplectic subspace, that is $T_{\rho}^{\sigma}\Sigma \cap T_{\rho}\Sigma = \{0\}$, this condition

Communicated by Prof. S. Mizohata November 24, 1987