Hyperbolic operators with symplectic multiple characteristics

By

Tatsuo Nishitani

1. Introduction

Let U be an open set in \boldsymbol{R}^{d} with coordinates $x^{\prime}=\left(x_{1}, \cdots, x_{d}\right)$. Denote by $T^{*} U$ the contangent bundle on U and by $\left(x^{\prime}, \xi^{\prime}\right)=\left(x_{1}, \cdots, x_{d}, \xi_{1}, \cdots, \xi_{d}\right)$ standard coordinates in $T^{*} U$. Let I be an open interval containing the origin and set $\Omega=I \times U$. We denote by $(x, \xi)=\left(x_{0}, x^{\prime}, \xi_{0}, \xi^{\prime}\right)$ standard coordinates in $T^{*} \Omega$ and

$$
D_{j}=-i \partial / \partial x_{j}, j=0, \cdots, d, D=\left(D_{0}, D^{\prime}\right), D^{\prime}=\left(D_{1}, \cdots, D_{d}\right)
$$

Let

$$
\begin{equation*}
P(x, D)=D_{0}^{m}+\sum_{j=1}^{m} A_{j}\left(x, D^{\prime}\right) D_{0}^{m-j} \tag{1.1}
\end{equation*}
$$

be a differential operator in D_{0} of order m with coefficients $A_{j}\left(x, D^{\prime}\right)$ which are classical pseudodifferential operators of order j defined near $\left(\hat{x}, \hat{\xi}^{\prime}\right)=\left(0, \hat{x}^{\prime}, \hat{\xi}^{\prime}\right) \in I \times$ $\left(T^{*} U \backslash 0\right)$. We denote by $p(x, \xi)$ the principal symbol of P and we assume that $p(x, \cdot)$ is hyperbolic with respect to $d x_{0}$ near $\left(\hat{x}, \hat{\xi}^{\prime}\right)$ that is the zeros ξ_{0} of $p\left(x, \xi_{0}, \xi_{0}{ }^{\prime}\right)$ are all real near $\left(\hat{x}, \hat{\xi}^{\prime}\right)$. We shall study the microlocal and local Cauchy problem for $P(x, D)$ with data on $x_{0}=0$.

Denote by Σ the set of real characteristics of order m of P;

$$
\begin{equation*}
\Sigma=\left\{(x, \xi) \in T^{*} \Omega \backslash 0 ; p(x, \xi)=d p(x, \xi)=\cdots=d^{m-1} p(x, \xi)=0\right\} \tag{1.2}
\end{equation*}
$$

We assume that
Σ is a C^{∞} manifold near $\rho=(\hat{x}, \hat{\xi})=\left(\hat{x}, \hat{\xi}_{0}, \hat{\xi}^{\prime}\right)$ with the
tangent space $T_{\rho} \Sigma$ at ρ such that $T_{\rho} S \supset T_{\rho}^{\sigma} \Sigma \cap T_{\rho} \Sigma$
where $S=\left\{x_{0}=0\right\}$ is a initial surface and $T_{\rho}^{\sigma} \Sigma$ is the σ orthogonal space of $T_{\rho} \Sigma$. Here σ is a natural 2 form on $T^{*} \Omega$ given in any standard coordinates (x, ξ) by

$$
\sigma=\sum_{j=0}^{d} d \xi_{j} \wedge d x_{j} .
$$

Note that if $T_{\rho} \Sigma$ is a symplectic subspace, that is $T_{\rho}^{\sigma} \Sigma \cap T_{\rho} \Sigma=\{0\}$, this condition

