On a Hasse principle for σ -conjugacy

Dedicated to Professor Ichiro Satake on his sixtieth birthday

By

Hiroshi SAITO

§0. Introduction

Let M/K be a cyclic extension of finite algebraic number fields of degree l, and σ a generator of the Galois group Gal(M/K), which will be fixed. For an algebraic group G defined over K, we denote by G(M) the set of all points of G with coordinates in M. The action of σ on G(M) can be defined naturally. We denote it by "g for $g \in G(M)$. In G(M), we define an equivalence relation \sim_{σ} by $g \sim_{\sigma} g'$ if and only if g = $h^{-1}g'^{\sigma}h$ for some $h \in G(M)$. This will be called σ -conjugacy. It was introduced for GL(2) in the study of the twisted trace formula ([3], [4]). The purpose of this paper is to determine σ -conjugacy classes for G such that $G(K) = A^{\circ}$, where A is a semi-simple algebra over K.

The σ -conjugacy has a close relation with the usual conjugacy, which will be denoted by \sim . For $g \in G(M)$, we define the "norm" of $g \in G(M)$ by $Ng = g^{\sigma}g^{\sigma^2}g \cdots g^{u-1}g$. Then the conjugacy class of Ng depends only on the σ -conjugacy class of g. We denote by $G(M)/\sim_{\sigma}$, $G(M)/\sim$ the sets of σ -conjugacy classes, and usual conjugacy classes in G(M) respectively. Then N defines a map of $G(M)/\sim_{\sigma}$ to $G(M)/\sim$. This map is fundamental in our study of σ -conjugacy. In fact, for $G = A^{\times}$, this map is injective, and to determine $G(M)/\sim_{\sigma}$, it is sufficient to determine the image of $G(M)/\sim_{\sigma}$ by N. It is easy to see this image is contained in the set $(G(M)/\sim)^{\sigma}$ consisting of conjugacy classes invariant under σ . To describe the image, we consider the norm at each place of K. For each place v of K, let K_v be the completion of K at v and let $M_v = M \bigotimes_K K_v$. Then the action of σ can be extended to M_v and $G(M_v)$. We can define in $G(M_v) \sigma$ -conjugacy class in $(G(M)/)^{\sigma}$ is contained in the image of G(M) by N if and only if it is contained in image of $G(M_v)$ by N for all v (cf. Th. 2.1).

In §1, we give preliminary results on σ -conjugacy. In §2, we state our main result and reduce the proof to the cases of semi-simple and unipotent elements. The proofs of these two cases are given in §3 and §4 separately.

§1. σ -conjugacy

In this section, we prove some elementary properties of σ -conjugacy. Let K be a field of characteristic 0 and G a linear algebraic group defined over K. We define σ -conjugacy for M more general than that in the Introduction. Let M be a commutative

Received February 12, 1988.