On the strongly hyperbolic systems II —A reduction of hyperbolic matrices—

By

Hideo YAMAHARA

§1. Introduction

This article is the continuation of the previous paper [12]. We shall study the strongly hyperbolic systems ($m \times m$ -matrix) in more general cases.

Let $\Omega = (-T, T) \times R_x^{l}$ and we shall consider the Cauchy problem :

(1.1)
$$\begin{cases} L[u] = \partial_t u - \sum_{k=1}^l A_k(t, x) \partial_{x_k} u - B(t, x) u = 0 \quad \text{on } \Omega, \\ u(t_0, x) = u_0(x), \quad -T < t_0 < T, \end{cases}$$

where u(t, x) and $u_0(x)$ are *m*-vectors.

We consider (1.1) in the C^{∞} -category. Let $L_0 = \partial_t - \sum_{k=1}^{t} A_k(t, x) \partial_{x_k}$, then we say that L_0 is a strongly hyperbolic system when the Cauchy problem (1.1) is uniformly C^{∞} -wellposed for any lower order term B(t, x). For details see [12].

When the coefficients $A_x(t, x)$ are constant or the multiplicites of the characteristic roots of $A(t, x; \xi) = \sum_{k=1}^{l} A_k(t, x)\xi_k$ are constant for any $(t, x; \xi) \in \Omega \times R_{\xi}^l \setminus \{0\}$, we know the necessary and sufficient conditions for L_0 to be a strongly hyperbolic system ([3], [5]). On the other hand if we do not impose the assumptions on the characteristic roots in the case of variable coefficients, the situation will be much more complicated.

In [12] the author gave a necessary condition without any assumptions of the characteristic roots. But, in it, we assumed that the rank of $(\lambda I - A(t, x; \xi)) = m - 1$, where det $(\lambda I - A(t, x; \xi)) = 0$. And the necessary condition for L_0 to be a strongly hyperbolic system was that the multiplicities of the characteristic roots are at most double at every point $(t, x; \xi)$.

It seems that the difficulties specific for systems will be appear when we drop the above assumption of rank. And instead of the above condition, if L_0 is a strongly hyperbolic system then it will hold that the orders (sizes) of the Jordan's blocks for any characteristic roots must be at most two at any point $(t, x; \xi)$. We will prove the above result in some restricted cases. Moreover when the orders of the Jordan's blocks are equal to two at a certain point we can give the following example.

Example. $L_0 = \partial_t - A(t)\partial_x$ (l=1),

Communicated by Prof. S. Mizohata December 21, 1987