Two torsion and homotopy associative *H*-spaces

By

James P. LIN¹ and Frank WILLIAMS

§0. Introduction

In this note we consider the following question:

If Y is a mod 2 H-space, when does $Y \times S^7$ admit the structure of a homotopy associative mod 2 H-space?

There are several examples that are revealing. First, it is well known that the seven-sphere admits the structure of an *H*-space, but does not admit a homotopy associative structure. In the case of Lie groups, it is known that at the prime 2, Spin (8) is homotopy equivalent to $Spin(7) \times S^7$ and Spin(7) is homotopy equivalent to $G_2 \times S^7$. Among all the compact simply connected simple Lie groups, only G_2 , F_4 , Spin(7) and Spin(8) have a subHopf algebra over the Steenrod algebra of the following form

(0.1)
$$A = \frac{\mathbb{Z}_2[x]}{x^4} \otimes \wedge (Sq^2x) = H^*(G_2; \mathbb{Z}_2), \quad \deg x = 3.$$

In this paper we show that this is the key factor in determining if a finite H-space producted with a seven-sphere can admit a homotopy associative H-structure. This can be summarized by the following theorems.

Theorem A. Let Y be a finite 1-connected complex and suppose $H^*(Y; \mathbb{Z}_2)$ does not contain any subalgebras over the Steenrod algebra of type A. Then $Y \times S^7$ cannot be a homotopy associative H-space.

Theorem B. Let Y be a finite 1-connected complex and suppose $H^*(Y; \mathbb{Z}_2)$ has at most one subalgebra of type A over the Steenrod algebra. Then $Y \times (S^7)^k$ cannot be a homotopy associative for $k \ge 3$.

The first results concerning products with S^7 and homotopy associativity were due to Goncalves, [2], who proved that if Y is any simply-connected compact simple Lie group other than G_2 and Spin(7), then $Y \times S^7$ cannot be a homotopyassociative H-space, even when localized at the prime two. Hubbuck [3] showed that the two-torsion is necessary for their products with S^7 to be the homotopy

Communicated by Prof. Toda, Nov. 24, 1988

¹ Partially supported by the National Science Foundation No. DMS 88219453.