Moduli of stable pairs

By

Kôji Yokogawa

Introduction

Let S be a scheme of finite type over a universally Japanese ring Ξ and let $f: X \to S$ be a smooth, projective, geometrically integral morphism. We shall fix an f-very ample invertible sheaf $\mathcal{O}_{\chi}(1)$ and a locally free \mathcal{O}_{χ} -module E of finite rank. An E-pair is a pair (F, φ) of a coherent sheaf F on a geometric fiber of f and an \mathcal{O}_X -homomorphism φ of F to $F \otimes_{\mathcal{O}_X} E$ such that φ induces a canonical structure of $S^*(E^{\vee})$ -module on F. An E-pair (F, φ) is said to be stable (or, semistable) if F is torsion free and if it satisfies the stability (or, semi-stability, resp.) inequality for all φ -invariant subsheaves of F (see §1). Stable pairs were first introduced by N. J. Hitchin [3] in the case where S = Spec(k) with k and algebraically closed field and where X is a curve and E is a line bundle. In this case, the moduli spaces of stable E-pairs were constructed by N. Nitsure [10], and W. M. Oxbury studied some properties of the moduli spaces [11]. In higher dimensional cases, C. T. Simpson constructed the moduli spaces of semi-stable Epairs over an algebraically closed field of characteristic zero [13]. In the method of C. T. Simpson, an E-pair (F, φ) were considered as a sheaf on Y = $\operatorname{Proj}(S^*(E^{\vee}) \oplus \mathcal{O}_X)$ and the problem was reduced to the study of stable points on $Q = \operatorname{Quot}_{\mathscr{O}_{Y}(-N) \oplus m/Y/S}^{H}$ for large integers N, where $\mathscr{O}_{Y}(1)$ is a very ample invertible sheaf on Y and H is the Hilbert polynomial of F with respect to $\mathcal{O}_{\mathbf{Y}}(1)$. To handle this problem he embedded Q into the Grassmann variety Grass $(H^{0}(\mathcal{O}_{Y}(l-N)^{\oplus m}), H(l))$ with l a sufficiently large integer. His proof depends, in essential way, on the boundedness theorem of M. Maruyama (Theorem 4.6 of [8]) which fails to hold in positive characteristic cases. The aim of this article is to construct a moduli scheme of semi-stable E-pairs along the method by D. Gieseker [2], M. Maruyama [6] and [7] and then our results hold good without assuming characteristic zero. The main idea is to find a space which seems as the "Gieseker space" in [2], [6] and [7]. It is the projective space $\mathbf{P}(\operatorname{Hom}_{\mathscr{O}_{\mathbf{X}}}(V \otimes_{\Xi} (\bigoplus_{i=0}^{r-1} S^{i}(E^{\vee})),$ $(L)^{\vee}$), where L is a line bundle on X and r is the rank of F. On the other hand, to parametrize E-pairs we have to use a scheme Γ constructed in §4 instead of Quotscheme in the case of usual stable sheaves and to study stable points of Γ we have to introduce a morphism of Γ to a projective bundle on Pic_{X/S} whose fibers are

Received, Aug 15, 1989