Partially conformal qc mappings and the universal Teichmüller space

Dedicated to Professor Kôtaro Oikawa on his 60th birthday

By

Hiromi Онтаке

Introduction

Let $M(\Delta)$ be the set of all Beltrami coefficients on the unit disk Δ , that is, it is the set of all bounded measurable functions μ defined on Δ with $\|\mu\|_{\infty}$ = esssup_{Δ} $|\mu(z)| < 1$. We denote by w_{μ} the unique quasiconformal (qc) selfmapping of Δ satisfying the Beltrami equation $w_{\overline{z}} = \mu w_{\overline{z}}$ and leaving ± 1 , *i* fixed. Two elements μ and ν in $M(\Delta)$ are called equivalent if $w_{\mu} = w_{\nu}$ on $\partial \Delta$. The universal Teichmüller space *T* is defined as the quotient space of $M(\Delta)$ with respect to this equivalence relation. This space *T* carries a natural metric, called the Teichmüller metric (cf. Lehto [3]), with respect to which the canonical projection $\Phi: M(\Delta) \to T$ is open as well as continuous.

Let V be a measurable subset of Δ , and set

$$M(V) = \{ \mu \in M(\varDelta); \ \mu|_{(\varDelta - V)} = 0 \}.$$

We denote the Banach space of all integrable holomorphic functions on Δ by A, and the characteristic function of a set Y by $\chi(Y)$. Our first result is a necessary condition for V to insure that the points which can be represented by quasiconformal mappings whose Beltrami coefficients are in M(V) contain a nonempty open set in T.

Theorem 1. Let V be a measurable subset of Δ with positive measure. If the interior of $\Phi(M(V))$ is not empty, then

(1)
$$\inf \{ \| \chi(V)\phi \|_1 ; \phi \in A, \| \phi \|_1 = 1 \} > 0.$$

We denote the hyperbolic disk with center at $\zeta \in \Delta$ and hyperbolic radius ρ by $D(\zeta; \rho)$, and the hyperbolic area of $Y \subset \Delta$ by $\sigma(Y)$.

Definition 1. A measurable subset Y of Δ is uniformly distributed in mean if

$$\inf\left\{\frac{\sigma(Y \cap D(\zeta; \rho))}{\sigma(D(\zeta; \rho))}; \zeta \in \Delta\right\} > 0 \quad \text{for some } \rho > 0.$$

Received June 14, 1989