Stability of foliations of 4-manifolds by Klein bottles

Dedicated to Professor Masahisa Adachi on his 60th birthday

By

Kazuhiko Fukui

§0. Introduction

This paper is a complement to my paper [8]. Let $\operatorname{Fol}_q(M)$ denote the set of condimension $q \ C^{\infty}$ -foliations of a closed manifold M. $\operatorname{Fol}_q(M)$ carries a natural weak C'-topology $(0 \le r \le \infty)$, which is described in [6], [9]. We denote this space by $\operatorname{Fol}'_q(M)$. We say a foliation F is C'-stable if there exists a neighborhood V of F in $\operatorname{Fol}'_q(M)$ such that every foliation in V has a compact leaf. We say F is C'-unstable if not. We say a foliation in a small neighborhood of F in $\operatorname{Fol}'_q(M)$ is a small C'-perturbation of F. It seems to be of interest to determine if F is C'-stable or not.

In this paper we shall give a sufficient condition for a foliation of a closed 4manifold by Klein bottles to be C^1 -stable. More precisely we have the following.

Theorem. Let F be a foliation of a closed 4-manifold M by Klein bottles. If $\chi_V(M/F)^2 + \chi(M/F)^2 \neq 0$, then F is C¹-stable.

1. Foliations of 4-manifolds by Klein bottles

Let M be a closed manifold and F a compact foliation of M of codimension two. By the results of Epstein [4] and Edwards-Millett-Sullivan [3], we have a nice picture of the local behavior of F as follows.

Proposition 1 (Epstein [5]). There is a generic leaf L_0 with property that there is an open dense saturated subset of M, where all leaves have trivial holonomy and are diffeomorphic to L_0 . Given a leaf L, we can describe a neighborhood U(L) of L, together with the foliation on the neighborhood as follows. There is a finite subgroup G(L) of O(2) such that G(L) acts freely on L_0 on the right and $L_0/G(L) \cong L$. Let D^2 be the unit disk. We foliate $L_0 \times D^2$ with leaves of form L_0 $\times \{pt\}$. This foliation is preserved by the diagonal action of G(L), defined by g(x, y) $= (x \cdot g^{-1}, g \cdot y)$ for $g \in G(L), x \in L_0$ and $y \in D^2$, where G(L) acts linearly on D^2 . So we have a foliation induced on $U = L_0 \times D^2/G(L)$. The leaf corresponding to y = 0is $L_0/G(L)$. Then there is a C^{∞} -imbedding $\varphi: U \to M$ with $\varphi(U) = U(L)$, which

Communicated by Prof. H. Toda May 22, 1989