A note on global strong solutions of semilinear wave equations

Dedicated to Prof. Teruo Ikebe on his 60th birthday

Bv

Hiroshi UESAKA

Introduction

Let L be a linear hyperbolic partial differential operator of second order with coefficients depending on $t \in [0, \infty)$ and $x = (x_1, ..., x_n) \in \mathbb{R}^n$. Let Ω be a bounded or unbounded domain in \mathbb{R}^n with a smooth boundary $\partial \Omega$, or the whole \mathbb{R}^n . We assume $3 \le n \le 6$. Let I be an interval in $[0, \infty)$ and let the time variable t run over I. We shall treat the following problem for a semilinear wave equation:

[SLP]
$$\begin{bmatrix} L[u] + F(u) = 0 & \text{in } I \times \Omega, \\ u(0, x) = f(x), & \partial_t u(x, 0) = g(x) & \text{in } \Omega, \\ B u(t, x) = 0 & \text{on } I \times \partial \Omega, \end{bmatrix}$$

where F is a nonlinear term satisfying $|F(u)| \le \text{const.}(|u| + |u|^{\frac{n}{n-2}})$ as $|u| \to \infty$, and B is a suitable linear boundary operator. If $\Omega = \mathbb{R}^n$, of course we omit the boundary condition and consider the initial value problems. For mixed problems suitable boundary conditions are assigned. The explicit form of the linear hyperbolic operator L and the boundary operator B will not be given, because it is inessential to our argument.

Our aim is to show the existence of a global strong solution u = u(t, x) of [SLP] for $I = [0, \infty)$. For that purpose we also need to solve [SLP] for some sufficiently short time intervals I. In order to solve [SLP] for some I we shall use some established results of the corresponding linear problem [LP],

where G is a given inhomogeneous term, and L, B and the data are the same as in [SLP].

Communicated by Prof. Ikebe Jan. 25, 1989