Construction of irreducible unitary representations of the infinite symmetric group \mathfrak{S}_{∞}

Dedicated to Professor Nobuhiko Tatsuuma on his sixtieth birthday

By

Takeshi HIRAI

Introduction.

For a set I, we denote by \mathfrak{S}_I the group of all finite permutations on I. In this paper, we study irreducible unitary representations (=IURs) of the infinite symmetric group \mathfrak{S}_N , denoted also by \mathfrak{S}_∞ . We consider it as an infinite discrete group, of non type I, and apply our results in the previous paper [DG] (=[8]), getting a big family of completely new type of IURs.

Representations of the infinite symmetric group have been studied from many standpoints. All the indecomposable positive-definite class functions (or characters) have already been determined by Thoma [21]. They are also studied recently by Vershik and Kerov from different points of view ([9], [22], [23]). When we introduce a certain non-discrete topology in \mathfrak{S}_{∞} , it becomes of type I and its IURs can be completely determined as shown by Lieberman ([11], [12]). Cf. also O'lshanskii [17] from this point of view. We have also other works ([3], [5], [7] etc.), rather operator algebra theoretic.

Very recently a new type of IURs has been constructed by Obata [16]. Discussions with him on his study and on Saito's [18] are one of our motivations of the present work, and discussions with Hashizume on his work [6] were also inspiring.

In our previous paper [DG], we studied a general theory of representations of infinite discrete groups, and applied it to wreath product groups $\mathfrak{S}_A(T)=D_A(T)\rtimes\mathfrak{S}_A$ of a group T with the permutation group \mathfrak{S}_A , where $D_A(T)=\prod_{\alpha\in A}T_{\alpha}$, $T_{\alpha}=T$ ($\alpha\in A$), is the restricted direct product. We consider a family $\mathfrak{A}(\mathfrak{S}_A(T))$ of subgroups of the form $H=\prod_{r\in \Gamma}\mathfrak{S}_{A_r}(T_r)$, where $A=\prod_{r\in \Gamma}A_r$ is a partition of A and T_r 's are subgroups of T. Further consider a family \mathfrak{R}_H of IURs of H coming naturally from characters χ_r of \mathfrak{S}_{A_r} , IURs $\rho_{T_r}^r$ of T_r and reference vectors to form tensor products, and put $\mathfrak{A}(\mathfrak{S}_A(T))=\bigcup_H\mathfrak{R}_H$ ($H\in\mathfrak{A}(\mathfrak{S}_A(T))$). Then, in case $|T|<\infty$, the induced representations

 $\operatorname{Ind}_{H^{A}}^{\mathfrak{S}_{A}(T)}\pi, \quad H \in \mathfrak{A}(\mathfrak{S}_{A}(T)), \quad \pi \in \mathfrak{R}_{H} \subset \mathfrak{R}(\mathfrak{S}_{A}(T)),$

give always IURs of $\mathfrak{S}_{A}(T)$ if $|\Gamma_{f}| \leq 1$ with $\Gamma_{f} = \{\gamma \in \Gamma; |A_{\gamma}| < \infty\}$ and $\operatorname{Ind}_{T_{\gamma}}^{r} \rho_{T_{\gamma}}^{r}$ is irreducible for $\gamma \in \Gamma_{f}$. Moreover the equivalence relations among these IURs are also completely determined.

For our study on the infinite symmetric group $G = \mathfrak{S}_N$ in the present paper, we Received August 30, 1989