Non-existence of positive eigenvalues of the Schrödinger operator in a domain with unbounded boundary

By

Таксо Тауозні

Introduction

In this paper we shall concern ourselves with the solution of the differential equation

$$(0.1) \qquad (-\varDelta + q - \lambda)u = 0$$

in a domain $D \subset \mathbb{R}^n (n \ge 2)$, where $\Delta = \sum_j (\partial/\partial x_j)^2$, $\lambda > 0$, and q is a complex valued function. Define a domain D_{α} of \mathbb{R}^n by

(0.2)
$$D_{\alpha} = \{x \in \mathbb{R}^{n} | x_{1} > | x | \cos(\alpha \pi/2) \},\$$

where $1 < \alpha < 2$, $|x| = (x_1^2 + \dots + x_n^2)^{1/2}$. We shall prove the following theorem.

Theorem 0.1. Assume that D is larger than the half space $x_1 > 0$ in the sense that there exists a constant c with 1 < c < 2 such that

 $(0.3) D \Box D_c,$

and assume that q can be written as $q=q_1+q_2$ such that the following conditions (0.4)~(0.6) are satisfied.

(0.4) q_1 is real valued, of class $C^1(D)$, and

$$q_1(x)=o(1)$$
 $(|x|\to\infty in D_c).$

(0.5)
$$|\nabla q_1(x)| + |q_2(x)| = o(|x|^{-1}) \quad (|x| \to \infty \text{ in } D_c).$$

(0.6) There exist constants d and $\delta > 0$ such that 1 < d < c, and

$$\nabla q_1(x)|+|q_2(x)|=O(|x|^{-(2/c)-\delta})$$
 $(|x|\to\infty \ in \ D_c-D_d).$

In addition assume that q is such that the unique continuation property holds for equation (0.1), i.e. if a solution u of (0.1) vanishes in an open set of D, u vanishes in all of D. Then if a solution u belongs to $L^2(D)$, u vanishes identically: $u \equiv 0$.

Here it should be noted that in the hypotheses of the theorem we assume no conditions on the values of the solution u on the boundary ∂D of D.

Communicated by T. Ikebe. Received August 8, 1989