Logarithmic Enriques surfaces

By

De-Qi Zhang

Introduction

Normal projective surfaces with only quotient singularities appear in studies of threefolds and semi-stable degenerations of surfaces (cf. Kawamata [5], Miyanishi [6], Tsunoda [11]). We have been interested in such singular surfaces with logarithmic Kodaira dimension $-\infty$ (cf. Miyanishi-Tsunoda [8], Zhang [12, 13]). In the present paper, we shall study the case of logarithmic Kodaira dimension 0.

Let \overline{V} be a normal projective rational surface with only quotient singularities but with no rational double singular points. Let K_P be the canonical divisor of \overline{V} as a Weil divisor. We call \overline{V} a logarithmic Enriques surface if $H^1(\overline{V}, \mathcal{O}_P)=0$ and K_P is a trivial Cartier divisor for some positive integer N. The smallest one of such integers N is called the index of K_P and denoted by $\operatorname{Index}(K_P)$ or simply by I. Since IK_P is trivial, there is a $\mathbb{Z}/I\mathbb{Z}$ -covering $\pi: \overline{U} \to \overline{V}$, which is unique up to isomorphisms and étale outside $\operatorname{Sing}\overline{V}$. Then \overline{U} , called the canonical covering of \overline{V} , is a Gorenstein surface, and the minimal resolution of singularities of \overline{U} is an abelian surface or a K3-surface.

Let $f: V \to \overline{V}$ be a minimal resolution of singularities of \overline{V} and set $D:=f^{-1}(\operatorname{Sing}\overline{V})$. We often confuse \overline{V} deliberately with (V, D) or (V, D, f).

§1 is a preparation and contains a proof of an inequality (cf. Proposition 1.6) which plays an important role in the whole theory; in particular, if $I \ge 3$ then $c := \#(\operatorname{Sing} \overline{V}) \le (D, K_V) \le c - 1 - (K_V^2)$, and it $I \ge 4$ then $c < -3(K_V^2)$. In §2, it is proved that if a positive integer p is a factor of I then $\overline{U}/(\mathbb{Z}/p\mathbb{Z})$ is a logarithmic Enriques surface, as well. We also prove that $I \le 66$; this result is originally due to S. Tsunoda. Moreover, $I \le 19$ if I is a prime number. §§3-5 are devoted to the proofs of the following three theorems:

Theorem 3.6. Let \overline{V} or synonymously (V, D) be a logarithmic Enriques surface with Index $(K_{\overline{V}})=2$. Then there is a logarithmic Enriques surface \overline{W} or (W, B) with Index $(K_{\overline{W}})=2$ and $\#(\operatorname{Sing}\overline{W})=1$ such that V is obtained from W by blowing up all singular points of B (i.e., intersection points of irreducible components of B) and then blowing down several (-1)-curves on the blown-up surface.

Moreover, $\#(\operatorname{Sing}\overline{U}) = \#(\operatorname{Sing}\overline{V}) \leq \#\{irreducible \ component \ of \ D\} \leq 10 \ (cf. \ Lemma \ 3.1).$ The case with $\#(\operatorname{Sing}\overline{V}) = 10 \ occurs$ (see Example 3.2) and, in this case, there is a (-2)-rod of Dynkin type A_{19} on U (cf. Cor. 3.10).

Communicated by Prof. Nagata.

Received June 23, 1989