Spectra and monads of stable bundles

By

R. HARTSHORNE¹ and A. P. RAO

§1. Introduction

Let \mathscr{E} be a stable vector bundle of rank two on \mathbf{P}^3 with $c_1 = 0$ and given c_2 . Associated to \mathscr{E} are its spectrum (§2) and its minimal monad (§3, Proposition 3.2). In this article, we investigate the possible spectra and minimal monads for low values of c_2 .

The spectrum χ satisfies three necessary conditions ((S1)-(S3) of §2). We show that for $c_2 \leq 19$, these conditions are also sufficient for the existence of a stable bundle with that spectrum. The question of existence for larger values of c_2 is left unresolved but it seems reasonable to conjecture, based on the evidence so far, that (S1)-(S3) form necessary and sufficient conditions on a sequence of integers for it to be the spectrum of a rank two stable bundle on \mathbf{P}^3 with $c_1 = 0$. When $c_2 \leq 19$, we in fact do more. For each possible spectrum, we produce a bundle \mathscr{E} for which $H^0(\mathscr{E}(1)) \neq 0$. This is also the reason that we stop at $c_2 = 19$. When $c_2 \leq 18$, the bundle \mathscr{E} is constructed from a double structure on a reduced curve. For $c_2 = 19$, there is one spectrum for which \mathscr{E} is constructed via a double structure on a non-reduced curve (in fact, a quadruple structure on a reduced curve). We take this as an indication that the construction gets harder beyond $c_2 = 19$.

We also determine all possible minimal monads when $c_2 \le 8$, thus completing work begun by Barth [B-1]. We find that some monads listed in his tables do not occur, while others, which had been excluded by his simplifying assumption [B-1], top of p.211, do in fact exist (see §6). The results are tabulated in §5.

We would like to thank L. Ein for various discussions.

§ 2.

Let \mathscr{E} be a stable rank two bundle with $c_1 = 0$ and given c_2 on \mathbb{P}^3 (over an algebraically closed field of arbitrary characteristic). Barth and Elencwajg [B-E] have defined (in characteristic zero) the *spectrum* of \mathscr{E} , which is a certain sequence of c_2 integers. In [H-1], §7, a characteristic-free definition of the spectrum is given and the following properties are proved in [H-1] and [H-2]. Let $\chi = \{k_1, k_2, \dots, k_{c_2}\}, k_i \in \mathbb{Z}$ be the spectrum of \mathscr{E} . Then χ and \mathscr{E} satisfy:

¹ Partially supported by the N.S.F. October 13, 1989