Relations on pfaffians I: plethysm formulas

By

Kazuhiko Kurano

1. Introduction

Let R be a commutative ring with unity, and fix an integer $n \ge 1$. Suppose x_{ij} be variables with $1 \le i < j \le n$. Denote by S = R[X] the polynomial ring with n(n-1)/2 variables x_{ij} . Put $x_{ij} = -x_{ji}$ for $1 \le i < j \le n$ and $x_{ii} = 0$ for i = 1, ..., n. (x_{ij}) is the generic n by n antisymmetric matrix with entries in S. For a positive integer t such that $1 < 2t \le n$ and a strictly increasing sequence $(1 \le)p_1 < \cdots < p_{2t}(\le n)$,

$$\frac{1}{2^{t}t!}\sum_{\sigma\in\mathbf{S}_{2t}}(\operatorname{sgn} \sigma) x_{p_{\sigma(1)}p_{\sigma(2)}} x_{p_{\sigma(3)}p_{\sigma(4)}} \cdots x_{p_{\sigma(2t-1)}p_{\sigma(2t)}}$$

is called a 2*t*-order pfaffian. (This polynomial is defined over an arbitrary commutative ring R.) It is well-known that the square of this 2*t*-order pfaffian coincides with the determinant of the 2*t* by 2*t* antisymmetric matrix $(x_{p_ip_j})_{i,j=1,...,2t}$. We denote by Pf_{2t} the ideal generated by all 2*t*-order pfaffians of (x_{ij}) and call it the pfaffian ideal of order 2*t*.

It is well-known that, if R is Gorenstein, Pf_{2t} is a Gorenstein ideal with grade $(Pf_{2t}) = hd_s(S/Pf_{2t}) = (n - 2t + 1)(n - 2t + 2)/2$ ([7] or [9]). Furthermore any Gorenstein subscheme of codimension 3 is known to be defined by certain pfaffians of a certain antisymmetric matrix ([3]).

The main purpose of this article is to investigate when the first syzygy modules of pfaffian ideals are generated by their relations of degree 1. When R contains the rationals \mathbf{Q} , any relation on pfaffians can be written by relations of degree 1 (in this case all the syzygies have been determined in [7] or [8]). In the case of arbitrary characteristic, when t = 1, n = 2t, n = 2t + 1([3]) or n = 2t + 2([14]), minimal free resolutions have been already constructed and the relation modules are generated by relations of degree 1. The main result of this article is

Theorem 5.3. 1. The first syzygy of the pfaffian ideal Pf_{2t} is generated over $S(\wedge^2 E)$ by relations of degree at most t, i.e.,

$$\operatorname{Ker}(M_t) = \operatorname{S}(\wedge^2 E) \cdot (\sum_{r=1}^t \operatorname{Ker}(M_{t,r})).$$

Communicated by Prof. Nagata, Oct. 9, 1989