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In the theory of conformal changes of Riemannian metrics, the W eyl conformal
curvature tensor plays a n  essential role in case of dimension more than three. We
consider, however, the theory from another standpoint. In  th e  first section of the
present paper we shall define a  linear connection on a Riemannian space relative to a
given Riemannian space, which is invariant under conformal change of metric. Thus
the curvature tensor of the connection is a  conformal invariant and the notion of rela-
tive conformal flatness is obtained.

The second section is devoted to the theory of projective changes of Finsler spaces
in a similar w ay. Relative to a  given Fins ler space a  projectively invariant nonlinear
connection is defined. As a special case we have a Riemannian projective theory which
will be developed in the following two sections.

§ 1 .  Conformal changes of a Riemannian space

Let M  be an n-dimensional differential manifold and T (M ) its tangent bundle. A
coordinate system x =(x i )  in M  induces a  canonical coordinate system (x , y )=(x i, y i)
in T (M ) . We put a i= a/ ax i and 5i =0/3yi•

Let us suppose that there is given on M  a  Riemannian metric tensor  a ( x ) .  Put-
tin g  a=(1/2)a i 1 y iy i, we denote the Riemannian structure by (M , a ) .  The Christoffel
symbols fi

i
k I constructed from ao  are coefficients of the Riemannian connection.

We now consider another arbitrary Riemannian metric tensor g i i ( x ) .  Putting L =
(1/2)g i g 1yi, this Riemannina is denoted by (M , L ). The Christoffel symbols constructed
from g i ;  are  denoted by F i

i
k . We put a =det (a i i ), g-=det (g i ,i ) and

1 ,
(1) EE —logn a '
C  is a  scalar function on M  and consequently Ci  is  covariant vector field on M . Then
we have a linear connection

(2) cr i ik .r ;k — C ,a 'k — C IP )+ C 'g jk

where C t g i C 1 .  T h e  connection CT '  is symmetric but not metrical. We shall call cP
the C-connection relative to a .  We have the following important theorem :
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