Theory of G-categories toward equivariant algebraic K-theory

Bv

Masahiko NIWA*

The notion of a G-category —a category with an action of a group G— was needed to make algebraic K-theory equivariant one. Though various notions have been used so far, the relations with them have not been explained explicitly yet. Beginning by introducing the notion of a G-category from point of view of Galois descent in linear categories, I deal comprehensively with various notions of G-categories and establish the comparison in the complete form. It is important for us to study simultaneously the limit categories together with G-categories and G-functors. The objects to appear in text are as follows.

G-category	G-functor	limit category
a category C with a G-descent datum	a morphism of Galois descent data	descended category $\Delta_H C$
a pseudo functor α: G→Cat	a pseudo nat. transf. $G \xrightarrow{\downarrow} Cat$	
a fibered category over G $\gamma: D \rightarrow G$	a cartesian functor over $G; D \longrightarrow D'$	representation category $Cart_G(H, D)$ or $Cart_G(\underline{G/H}, D)$
a lax functor	a lax nat. transf.	lax limit over G
a (strict) functor	a nat. transf.	$\Delta_H \alpha(\cdot)$ or $\alpha(\cdot)^H$
$\alpha: G \rightarrow Cat$	$G \xrightarrow{\downarrow} Cat$	
an O_g^{op} -category	a nat. transf.	$\beta(G/H)$
$\beta: O_G^{op} \rightarrow Cat$	$O_{G}^{\text{op}} \xrightarrow{\downarrow} Cat$	

$\S 1.$ Introduction: The notion of G-categories

In order to introduce the notion of G-categories i.e. categories on which the group G acts, I think, we are asked to fit it to the following problems. One of them is the

^{*} This research was partially supported by Grant-in-Aid for Scientific Research (C) No. 62540037

Communicated by Prof. H. Toda, Feb. 19, 1990