Openness of stability

Bv

George R. Kempf

Let X be a smooth projective variety of dimension n. Let N. S. (X) be the Neron-Severi group of divisors on X modulo numerical equivalence. Then N. S. (X) is a finitely generated abelian group which embeds in V = N. S. $(X) \otimes_{\mathbf{Z}} \mathbf{R}$. By a result of Kleiman [1], there is an open cone C in V such that $C \cap N$. S. (X) consists of all classes of ample divisors.

Let θ be an ample divisor on X. If \mathscr{F} is a coherent sheaf on X, then $\deg_{\theta}\mathscr{F}\equiv$ the intersection number $c_1(\mathscr{F})\cdot\theta^{n-1}$ where $c_1(\mathscr{F})$ is the first Chern class and the slope $\mu_{\theta}\mathscr{F}\equiv\deg_{\theta}\mathscr{F}/\mathrm{rank}\,\mathscr{F}$ if \mathscr{F} is not torsion. A vector bundle \mathscr{W} on X is θ -stable if $\mu_{\theta}(\mathscr{F})<\mu_{\theta}(\mathscr{W})$ for all coherent $0\not\subseteq\mathscr{F}\subseteq\mathscr{W}$.

In this paper we propose to prove

Theorem 1. There is an open cone $D(\mathcal{W}) \subset C$ such that $N.S.(X) \cap D(\mathcal{W})$ consists of the classes of θ such that \mathcal{W} is θ -stable.

This result may be proven analytic over \mathbb{C} replacing N.S.(X) by the real $H^{1,1}$ -classes and C by the classes of Kähler metrices. In this case the result follows from the openness of the differential operator in the equation for a Hermitian-Einstein metric on stable bundles using the Donaldson-Uhlenbeck-Yau theorem. Thus our result is mostly interesting in characteristic p unless one just wants an algebraic proof.

Also there are the openness theorems of Maruyama [2] where the polarization is essentially fixed but \mathcal{W} and X vary algebraically. There should be a common generalization of our results but this would be too complicated in seeing the ideas clearly.

§1. Testing for stability

We first note

Lemma 2. The θ -stability of W is equivalent to the condition

*) for all $0 \le i < \text{rank } W$ and all invertible sheaves \mathcal{L} on X such that $\deg_{\theta} \mathcal{L} \ge i\mu_{\theta}(W)$, there is no non-zero section of $\Lambda^i W \otimes \mathcal{L}^{\otimes -1}$ that satisfies the Plücker relations at a generic point of X.

Proof. If $0 \subset \mathcal{F} \subset \mathcal{W}$ is a destabilizing \mathcal{F} then $\Lambda^i \mathcal{W} \otimes (\Lambda^i \mathcal{F})^{dual}$ has a non-zero section where $i = \operatorname{rank} \mathcal{F}$. Now $(\Lambda^i \mathcal{F})^{dual}$ dual $= \mathcal{L}$ is invertible and