On mod p cohomology of the space X_{Γ} and mod p trace formula for Hecke operators

By

Goro NISHIDA

1. Introduction

Let $M_2 \mathbb{Z}$ denote the set of 2×2 matricies over \mathbb{Z} . The semigroup $M_2 \mathbb{Z}$ acts on the 2-torus T^2 as endomorphisms in the standard way. For any subgroup Γ of $M_2 \mathbb{Z}$, we can define the semi-direct product $\Gamma \ltimes T^2$. We denote the classifying space $B(\Gamma \ltimes T^2)$ by X_{Γ} . Our main interest is in the case of $\Gamma = SL_2 \mathbb{Z}$ or congruent modular groups. In this case it is known [3] that there is an isomorphism

$$H^{2n+1}(X_{\Gamma}; \mathbf{R}) \cong H^1(\Gamma; H^{2n}(BT^2; \mathbf{R})),$$

where the right hand side is the cohomology of the group Γ with the coefficient module $H^{2n}(BT^2; \mathbf{R})$. Then the Eichler-Shimura homomorphism turns out to be a homomorphism

$$\phi: M_k \to H^{2k-3}(X_{\Gamma}; \mathbf{R}),$$

where M_k is the space of modular forms of weight k for Γ . Moreover it is known [6] that we can define a Hecke operator T(n) on $H^*(X_{\Gamma}; M)$ for any module M induced from a stable self map of X_{Γ} , and ϕ commutes with Hecke operators. Now the theorem of Eichler and Shimura [7] asserts that $\phi: S_k \cong H_P^1(\Gamma; H^{2k-4}(BT^2; \mathbb{R}))$, where S_k is the space of cusp forms of weight k and H_P^1 means the parabolic cohomology of Γ . Then it is also known [3] that

$$\dim_{\mathbf{R}} H^{2k-3}(X_{\Gamma}; \mathbf{R}) = \dim_{\mathbf{R}} H^{1}_{P}(\Gamma; H^{2k-4}(BT^{2}; \mathbf{R})) + \nu,$$

where v is the number of equivalent classes of cusps.

In this note we study $H^*(X_{\Gamma}; \mathbf{F}_p)$, which has richer structure; the action of Steenrod algebra and the module structure over $H^{ev}(X_{\Gamma}; \mathbf{F}_p)$. We shall show that $H^{ev}(X_{\Gamma}; \mathbf{F}_p) \cong \mathbf{F}_p[x, y]^{\Gamma}$, the ring of Γ -invariants. In the case of $\Gamma = SL_2 \mathbb{Z}$, $\mathbf{F}_p[x, y]^{\Gamma} \cong \mathbf{F}_p[q, q_1]$, deg q = p + 1 and deg $q_1 = p(p - 1)$. It is shown (Corollary 3.3) that $H^*(X_{\Gamma}; \mathbf{F}_p)/qH^*(X_{\Gamma}; \mathbf{F}_p)$ satisfies certain periodicity. Using this the $\mathbf{F}_p[q, q_1]$ -module structure of $H^*(X_{\Gamma}; \mathbf{F}_p)$ is determined (Theorem 5.3). As a corollary of those results, we give a formula on mod p value of the trace of Hecke operators acting on cusp forms.

Received October 8, 1990