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§0. Introduction

The purpose of this paper is to study the relationship between Calabi-Yau 3-folds
with elliptic fibrations and compact non-Kdhler 3-folds with K=0, b,=0, ¢g=0. The
non-Kidhler 3-folds referred to here have firstly appeared in Friedman’s paper [3]. In
this paper he has shown that if there are sufficiently many (mutually disjoint) (—1,
—1)-curves on a Calabi-Yau 3-fold, then one can contract these curves and can deform
the resulting variety to a smooth non-Kihler 3-fold with K,=0, b,=0, ¢=0. For
example, in the case of a (general) quintic hypersurface in P*, one can do this pro-
cedure for two lines on it. This phenomenon is analogous to the one for (—2)-curves
on a K3 surface. In fact a (—2)-curve on a K3 surface often disappears in a deforma-
tion and this fact just says that one can contract this (—2)-curve to a point and can
deform the resulting variety to a (smooth) A3 surface. By this phenomenon, we can
explain the varience of the Picard numbers of K3 surfaces in deformations and it is
well-known that a general point of the moduli space of K3 surfaces corresponds to a
non-projective (but Kdhler) K3 surface on which there are no (—2)-curves. Taking
such a non-projective surface into consideration, one has a famous theorem that two
arbitrary K3 surfaces are connected by deformations. There is, however, a difference
between Calabi-Yau 3-folds and K3 surfaces, thatis, a (—1, —1)-curve never disappears
like a (—2)-curve in deformations. This is closely related to the fact that Calabi-Yau
3-folds have a large repertory of topological Euler numbers. For the speculation around
this area, one may refer to M. Reid’s paper [12].

The main result of this paper is the following:

Theorem A. Let X be a Calabi-Yau 3-fold which has an elliplic fibration with a
rational section. Then the bimeromorphic class of X is obtained as a semz-stable degenera-
tion of a compact non-Kihler 3-fold with K=0, b,=0 and q=0, i.e. there is a surjective
proper map f of a smooth 4-dimensional variety X to a l-dimensional disc 4 such that

1) f-'(t) is a compact non-Kdihler 3-fold with K=0, b,=0, ¢=0 for te4*,

2) f“(O):él})X : s a normal crossing dwisor of X%, and

3) X, is bimeromorphic to X and other X;'s are in the class C.

Here we will explain the motivation of the formulation in Theorem A. If there are
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