Ergodic properties of discrete groups; inheritance to normal subgroups and invariance under quasiconformal deformations

By

Katsuhiko MATSUZAKI

§0. Introduction

There are many studies on the ergodic properties of discrete isometry groups Γ acting on the *n*-dimensional hyperbolic space $B^n = \{x \in \mathbb{R}^m; |x| < 1\}$ and on the sphere at infinity $S^{n-1} = \{x \in \mathbb{R}^n; |x| = 1\}$ (cf. [N]). Among them, Lyons and Sullivan's work [LS] is remarkable. They obtained the conditions concerning covering transformation groups, under which normal (regular) covers of a compact hyperbolic manifold are recurrent or Liouville. In other words, we may say that they showed what normal subgroups inherit the ergodicity of the action on S^{n-1} with respect to the Lebesgue measure from a cocompact discrete group. In connection with this problem, in the present paper, we consider in what degree any normal subgroup Γ' of Γ inherits ergodicity on $S^{n-1} \times S^{n-1}$ ($= B^n/\Gamma$ is recurrent) and ergodicity on S^{n-1} ($= B^n/\Gamma$ is Liouville). Particularly, in the case where n = 2, we can characterize $S^{n-1} \times S^{n-1}$ -ergodicity of Γ by conservativity of the action on S^{n-1} of Γ' :

Theorem. A Riemann surface B^2/Γ is recurrent if and only if any non-trivial normal subgroup of Γ is conservative.

We develop those arguments in the first part "inheritance to normal subgroups" ($\S4$ and $\S5$) after the sections of several preliminaries and preparations. The first part also contains some investigations on the following two conjectures which seem interesting in the course of our arguments:

(C1) If B^n/Γ is recurrent and Γ' is a normal subgroup of Γ such that any subgroup of Γ/Γ' is a finitely generated solvable group, then B^n/Γ' is Liouville (cf. [LS]).

(C2) Γ acts on S^{n-1} ergodically if and only if any normal subgroup Γ' of Γ acts on S^{n-1} either conservatively or totally dissipatively.

In the second part "invariance under quasiconformal deformations" (§6 and §7), we study whether the ergodic properties on S^{n-1} are preserved or not, by

Communicated by Prof. K. Ueno, August 15, 1991