Some prime ideals in the extensions of Noetherian rings

By

Junro Sato

Introduction

Let R and S be commutative rings with unity and let $f: R \to S$ be a homomorphism with f(1) = 1. Mcquillan, in his paper [2], introduces the notions of S-prime and S-primary ideals. In fact, he proved that if f is a flat homomorphism, then every prime ideal of S is S-prime, and that if R is integrally closed integral domain, S is integral over R and no non-zero element of R is a divisor of zero in S, then every prime ideal of R is S-primary. The aim of this paper is to investigate more closely S-prime and S-primary ideals. Further, we introduce the notion of S-quasi-primary, and determine its structure. We are mainly interested in the case where R and S are Noetherian. If $f: R \to S$ is a homomorphism of rings and if I is an ideal of S, then $f^{-1}(I)$ is denoted by $I \cap R$.

In the first section, we consider S-prime ideals. In fact, we shall prove that a is S-prime if and only if a is a prime ideal of R and $aS \cap R = a$, provided that $aS \neq S$.

In the second section, we discuss S-primary ideals.

In the final section, we introduce and study S-quasi-primary ideals. The main result is that a is an S-quasi-primary if and only if $aS \cap R$ is an R-primary ideal of R such that $\sqrt{a} = \sqrt{aS \cap R} = p$, and that $Ass_R(S/aS) = \{p\}$.

In this article R and S are assumed to be commutative rings and to have unity unless otherwise specified, and $f: R \to S$ is a homomorphism with f(1) = 1, and that our general references for unexplained technical terms are [1] and [3].

§1. S-prime ideals

First, we recall the following definition.

Definition 1.1. Let $f: R \to S$ be a homomorphism and let q be an ideal of R. We say that q is S-prime if, $a \in R$, $\alpha \in S$ and $f(a)\alpha \in qS$, implies $a \in q$, or $\alpha \in qS$.

Remark 1.2. Let q be an ideal of R such that qS = S. Then q is S-prime.

Now, we show our key lemma.

Communicated by Prof. K. Ueno, August 5, 1991