The K_* -localizations of the stunted real projective spaces

By

Zen-ichi Yosımura

0. Introduction

Given an associative ring spectrum E with unit, a EW-spectrum E is said to be quasi E_* -equivalent to a EE-spectrum E if there exists a map E: E is an equivalence where E is an equivalence where E is an equivalence. We call such a map E: E is an equivalence. Let E is no difference between the E is not the E is no difference between the E is no difference betwee

In [Y2] we studied the quasi KO_* -equivalence, and moreover in [Y3] and [Y4] we determined the quasi KO_* -types of the real projective spaces RP^n and the stunted real projective spaces $RP^n/RP^m = RP^n_{m+1}$. In this note we shall be interested in the quasi S_{K*} -equivalence in advance of the quasi KO_* -equivalence. The purpose of this note is to determine the K_* -local types of the stunted real projective spaces RP^n/RP^m along the line of [Y5], in which we have already determined the K_* -local types of the real projective spaces RP^n [Y5, Theorem 3]. Our proof will be established separately in the following three cases;

i)
$$RP^{2s+n}/RP^{2s}$$
 $(2 \le n \le \infty)$, ii) RP^{2s+2t}/RP^{2s-1} $(t \ge 1)$ and

iii)
$$RP^{2s+2t+1}/RP^{2s-1}$$
 $(0 \le t \le \infty)$.

In the proof of [Y5, Theorem 3] we first investigated the behavior of the Adams operations ψ_C^k and ψ_R^k for the real projective spaces RP^n , and then applied a powerful tool due to Bousfield [B2, 9.8] (or see [Y5, Theorem 4]). By a quite similar argument to the old case we shall determine the K_* -local types of RP_{2s+1}^{2s+n} ($2 \le n \le \infty$) and the Spanier-Whitehead duals DRP_{2s}^{2s+2t} ($t \ge 1$) (Theorem 2.7 and Proposition 2.8). Since two finite spectra X and Y have the same K_* -local type if and only if their duals DX and DY have the same K_* -local type [Y5, Lemma 4.7], it is easy to determine the K_* -local types of RP_{2s}^{2s+2t} ($t \ge 1$)