Logarithmic Enriques surfaces, II

By

De-Qi Zhang

Introduction

This is a sequel of our paper [2]. Every thing will be defined over the complex number field C. Let \overline{V} be a normal projective surface. A log Enriques surface can occur as the base space of a cy 3-fold with a fibration.

Definition 1. \overline{V} is a logarithmic (log, for short) Enriques surface if the subsequent conditions are satisfied:

(1) \overline{V} has at worst isolated quotient singularities;

(2) A multiple $NK_{\bar{V}}$ of a canonical divisor $K_{\bar{V}}$ of \bar{V} is linearly equivalent to zero for some positive integer N;

(3) $H^1(\overline{V}, \mathcal{O}_{\overline{V}})$ vanishes.

The index of \overline{V} is defined as:

 $I = \operatorname{Index}(\overline{V}) = \operatorname{Min}\{N \ge 1; NK_{\overline{V}} \sim 0\}.$

A K3-surface (resp. an Enriques surface) is a log Enriques surface of index one (resp. two). It is known that $1 \le I \le 66$ (cf. Proposition 1.3 below). Furthermore, if I is a prime number then $I \le 19$. Since $IK_{\overline{V}}$ is linearly equivalent to zero, there is a $\mathbb{Z}/I\mathbb{Z}$ -covering $\pi: \overline{U} \to \overline{V}$ such that π is étale over the smooth part \overline{V} - (Sing \overline{V}) of \overline{V} and that \overline{U} is an abelian surface or a K3-surface possibly with isolated rational double singularities (cf. [2, Definition 2.1]). In particular, the canonical divisor $K_{\overline{U}}$ of \overline{U} is linearly equivalent to zero.

Definition 2. $\pi: \overline{U} \to \overline{V}$ is the canonical covering of \overline{V} . Actually, \overline{V} determines \overline{U} uniquely up to isomorphisms.

A log Enriques surface of index one is a K3-surface possibly with rational double singularities. A log Enriques surface of index 2 is an Enriques surface possibly with rational double singularities or a rational surface (cf. [2, Proposition 1.3]). The latter surfaces are classified in [2, Theorem 3.6]. Log Enriques surfaces \bar{V} of index I with smooth canonical coverings \bar{U} are classified in [2, Theorems 4.1 and 5.1]. In particular, if \bar{U} is an abelian surface then I = 3 or 5.

If \overline{V} has rational double singular points, we denote by \widetilde{V} a minimal resolution of all rational double singularities of \overline{V} . Then \widetilde{V} is a log Enriques surface of the same index as \widetilde{V} . Instead of \widetilde{V} , we can treat \widetilde{V} without loss of generality.

Communicated by Prof. K. Ueno, September 13, 1991