Propagation of analytic and Gevrey singularities for operators with non-involutive characteristics

By

Massimo CICOGNANI and Luisa ZANGHIRATI

1. Introduction

In this paper we cosider a class of analytic operators with multiple non-involutive characteristics and study the propagation of analytic and Gevrey singularities.

To state precisely our result, we begin by recalling that $f \in C^{\infty}(X)$, X an open set in \mathbb{R}^n , is said to be of Gevrey class G^d , $1 \le d \le \infty$, at $x_0 \in X$ if there exists a neighborhood V of x_0 , $V \subset X$, such that

(1.1)
$$\sup_{x \in V} |D^{\alpha}f(x)| \le C^{|\alpha|+1} \alpha!^{d}$$

for a constant C independent on $a \in \mathbb{Z}_{+}^{n}$. We denote by $G^{d}(X)$ the space of all $f \in C^{\infty}(X)$ which are of class G^{d} at every $x_{0} \in X$, and write $G_{0}^{d}(X)$ for $G^{d}(X) \cap C_{0}^{\infty}(X)$. $G^{1}(X)$ is the space of analytic functions in X.

For d > 1, the spaces of d-ultradistributions $G^{(d)'}(X)$, $G_0^{(d)'}(X)$ are the dual spaces of $G^d(X)$ and $G_0^{(d)}(X)$ respectively and $G^{(d)'}(X)$ can be identified with the space of all elements of $G_0^{(d)'}(X)$ with compact support. We recall also that the space D'(X) of all distributions in X can be identified with a subspace of $G_0^{(d)'}(X)$ for all d > 1. If $1 < d_1 \le d$ then we have $G_0^{(d)'}(X) \subset G_0^{(d_1)'}(X)$.

The *d*-wave front set $WF_d(f)$ of $f \in G_0^{(d)'}(X)$, d > 1, is defined as follows: for a fixed $(x_0, \xi_0) \in T^*(X) \setminus 0$, we say that $(x_0, \xi_0) \notin WF_d(f)$ if there exist $\phi \in G_0^d(X)$ with $\phi(x) = 1$ in a neighborhood of x_0 , and positive constants C, ε such that the Fourier transform $(\phi f)^{\wedge}$ of ϕf satisfies:

(1.2) $|(\phi f)^{\wedge}(\xi)| \leq C \exp(-\varepsilon |\xi|^{(1/d)})$

for all ξ in a conic neighborhood of ξ_0 .

We also define the 1-wave front set (analytic wave front set) WF₁(*f*) of $f \in G_0^{(d)'}(X)$, d > 1: let us consider a sequence $\{\phi_\nu\} \subset G_0^{d}(X)$, $\phi_\nu(x) = 1$ in a neighborhood of x_0 , such that there exists a constant C and for every $\varepsilon > 0$ a consotant C_{ε} satisfying

Communicated by Prof. N. Iwasaki, November 5, 1991