On finite generation of Rees rings defined by filtrations of ideals

By

Kazuhiko KURANO

1. Introduction

Throughout this paper we assume that all rings are commutative with unit.

Let A be a ring and $\mathcal{F} = \{F_i\}_{i \in \mathbb{Z}}$ a filtration of ideals of A, i.e., \mathcal{F} is a family of ideals of A satisfying $F_i \supseteq F_{i+1}$, $F_i = A$ for $i \le 0$, $F_i \cdot F_j \supseteq F_{i+j}$. For example, families of ideals defined below satisfy the axiom of filtrations:

- $F_i = I^i$ for an ideal I of A.
- $F_i = I^i \cdot S^{-1}A \cap A$ for an ideal I of A, where S stands for a multiplicatively closed subset of A. (When I is a prime ideal and S is equal to $A \setminus I$, F_i coincides with the *i*-th symbolic power $I^{(i)}$.)
- $F_i = \overline{I^i}$ for an ideal I of A, where \overline{J} denotes the integral closure of an ideal J.
- $F_i = (I^i)^*$ for an ideal *I* of a ring *A* which includes a field of positive characteristic, where J^* denotes the tight closure (see [5]) of an ideal *J*.

We put $R(\mathcal{F}) = \sum_{i \ge 0} F_i \xi^i \subseteq A[\xi]$ (resp. $R'(\mathcal{F}) = \sum_{i \in \mathbb{Z}} F_i \xi^i \subseteq A[\xi, \xi^{-1}]$), where ξ is an indeterminate over A, and call it the *Rees ring* (resp. *extended Rees ring*) associated with the filtration \mathcal{F} . Of course, $R(\mathcal{F})$ or $R'(\mathcal{F})$ is not always Noetherian even if A is Noetherian. (For example, if $(0) \neq I = F_i \subseteq \operatorname{rad}(A)$ is satisfied for i > 0, we can prove that neither $R(\mathcal{F})$ nor $R'(\mathcal{F})$ is Noetherian.) In the case where $R(\mathcal{F})$ is Noetherian, the homological properties (Cohen-Macaulayness, Gorensteinness, etc.) of such rings were studied by Goto-Nishida [4] and Viêt [11]. The purpose of this paper is to give a sufficient condition for finite generation of Rees rings associated with filtrations of ideals of Noetherian rings.

We prove the main theorem (Theorem 2.3) in the next section. Let S be a Noetherian ring and T = S[V] the polynomial ring over S with a variable V. Suppose that $\mathcal{F} = \{F_i\}_{i \in \mathbb{Z}}$ is a filtration of ideals of T. We put $G_i = F_i \cap$ S for $i \in \mathbb{Z}$. Then it is easily checked that $\mathcal{G} = \{G_i\}_{i \in \mathbb{Z}}$ satisfies the axiom of

Communicated by Prof. K. Ueno, Received September 17, 1992, Revised August 20, 1993